孙海蓉, 李骏, 董泽. 基于量子行为和Lévy飞行改进野狗算法的SCR脱硝系统模型辨识[J]. 山东电力技术, 2023, 50(6): 44-51. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.008
引用本文: 孙海蓉, 李骏, 董泽. 基于量子行为和Lévy飞行改进野狗算法的SCR脱硝系统模型辨识[J]. 山东电力技术, 2023, 50(6): 44-51. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.008
SUN Hai-rong, LI Jun, DONG Ze. Model Identification of SCR Denitration System Based on Quantum Behavior and Lévy Flight Improved Dingo Algorithm[J]. Shandong Electric Power, 2023, 50(6): 44-51. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.008
Citation: SUN Hai-rong, LI Jun, DONG Ze. Model Identification of SCR Denitration System Based on Quantum Behavior and Lévy Flight Improved Dingo Algorithm[J]. Shandong Electric Power, 2023, 50(6): 44-51. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.008

基于量子行为和Lévy飞行改进野狗算法的SCR脱硝系统模型辨识

Model Identification of SCR Denitration System Based on Quantum Behavior and Lévy Flight Improved Dingo Algorithm

  • 摘要: 传统野狗优化算法搜索范围有局限性,寻优结果往往不是全局最优,针对此问题,提出一种基于量子行为和Lévy飞行的改进野狗优化算法(Quantum Dingo Optimization Algorithm,QDOA)。量子行为赋予种群移动轨迹和速度的不确定性,使算法的搜索范围可覆盖整个可行空间;Lévy飞行策略的随机步长性,克服算法迭代后期易陷入局部最优问题,提升了求解精度。通过基准测试函数进行性能测试,QDOA相较其他几种算法在准确性、精度方面表现突出。应用QDOA对宁夏某电厂660 MW燃煤机组选择性催化还原(Selective Catalytic Reduction,SCR)脱硝控制系统高负荷段、中低负荷段现场数据进行模型辨识,建立了SCR脱硝系统阀门开度与入口氨气流量、入口氨气流量与出口NOx质量浓度之间的传递函数,经检验辨识后的模型能较好地反映该SCR脱硝控制系统的动态特性,证明了该算法的可行性。

     

    Abstract: A quantum dingo optimization algorithm(QDOA)based on quantum behavior and Lévy flight was proposed to address the limitations of traditional dingo optimization algorithms in terms of search scope and the fact that the search results were often not globally optimal.Quantum behavior gave uncertainty to the trajectory and velocity of the population,so that the search range of the algorithm could cover the whole feasible space.The random step size of Lévy flight strategy overcomes the problem that the algorithm was easy to fall into local optimum in the later stage of iteration,and improves the accuracy of solution.Through the performance test of the benchmark function,QDOA performed better than other algorithms in accuracy and precision.QDOA was used to identify the field data of high load section,medium and low load section of selective catalytic reduction(SCR)denitration control system of 660 MW coal-fired unit in a power plant in Ningxia. The transfer function between valve opening and inlet ammonia flow,inlet ammonia flow and outlet NOxconcentration of SCR denitrification system was established. The identified model could better reflect the dynamic characteristics of the SCR denitration control system,which proves the feasibility of the algorithm.

     

/

返回文章
返回