张立波, 高骞, 周勤勇, 韩奕, 申洪, 贺庆. 考虑可再生能源出力概率模型和预测负荷区间模型的输电网规划方法[J]. 全球能源互联网, 2019, 2(1): 62-69. DOI: 10.19705/j.cnki.issn2096-5125.2019.01.008
引用本文: 张立波, 高骞, 周勤勇, 韩奕, 申洪, 贺庆. 考虑可再生能源出力概率模型和预测负荷区间模型的输电网规划方法[J]. 全球能源互联网, 2019, 2(1): 62-69. DOI: 10.19705/j.cnki.issn2096-5125.2019.01.008
ZHANG Libo, GAO Qian, ZHOU Qinyong, HAN Yi, SHEN Hong, HE Qing. Transmission Network Expansion Planning Considering Probabilistic Model of Renewable Power and Interval Model of Predicted Load[J]. Journal of Global Energy Interconnection, 2019, 2(1): 62-69. DOI: 10.19705/j.cnki.issn2096-5125.2019.01.008
Citation: ZHANG Libo, GAO Qian, ZHOU Qinyong, HAN Yi, SHEN Hong, HE Qing. Transmission Network Expansion Planning Considering Probabilistic Model of Renewable Power and Interval Model of Predicted Load[J]. Journal of Global Energy Interconnection, 2019, 2(1): 62-69. DOI: 10.19705/j.cnki.issn2096-5125.2019.01.008

考虑可再生能源出力概率模型和预测负荷区间模型的输电网规划方法

Transmission Network Expansion Planning Considering Probabilistic Model of Renewable Power and Interval Model of Predicted Load

  • 摘要: 针对电网规划过程中不确定因素的数学模型类型不一致的情况,提出了考虑可再生能源出力概率模型和预测负荷区间模型的输电网规划方法。首先给出了考虑区间数的扩展随机机会约束规划模型;然后建立了以投资成本最小为目标函数,以支路潮流的扩展随机机会测度作为约束条件,同时考虑随机不确定因素和区间不确定因素的输电网规划模型;采用粒子群优化算法优化规划方案,采用准蒙特卡洛模拟和改进的分支定界相结合的方法对规划方案进行安全校验。IEEE RTS-24节点系统和某实际电网的案例结果证明了所提算法的有效性和正确性。

     

    Abstract: The same type of uncertainty model is usually taken into account in the existing transmission network expansion planning(TNEP) methods considering uncertainties. But in the process of TNEP, mathematical characteristic of uncertain factors may be different. In order to solve this problem, a TNEP method considering probabilistic model of renewable energy and interval model of predicted load is put forward. Firstly, an expanded stochastic chance constrained programming model considering interval number is presented. Then, a TNEP model is constructed, which considers probabilistic model and interval model of uncertainties. This model minimizs the investment cost and subjects to the expanded stochastic chance constraint of branch power. The particle swarm optimization method is employed to optimize the planning schemes and the hybrid quasi Monte Carlo simulation and improved branch-and-bound method is adopted to check the security of the given planning schemes. The case analyses on the modified IEEE RTS-24 bus system and an actual power grid verify the effectiveness and validity of the proposed planning method.

     

/

返回文章
返回