赵晨浩, 焦在滨, 李程昊, 张迪, 张鹏辉. 基于双塔Transformer的电力系统暂态稳定评估[J]. 全球能源互联网, 2024, 7(5): 521-529. DOI: 10.19705/j.cnki.issn2096-5125.2024.05.005
引用本文: 赵晨浩, 焦在滨, 李程昊, 张迪, 张鹏辉. 基于双塔Transformer的电力系统暂态稳定评估[J]. 全球能源互联网, 2024, 7(5): 521-529. DOI: 10.19705/j.cnki.issn2096-5125.2024.05.005
ZHAO Chenhao, JIAO Zaibin, LI Chenghao, ZHANG Di, ZHANG Penghui. Power System Transient Stability Assessment Based on Two-tower Transformer Model[J]. Journal of Global Energy Interconnection, 2024, 7(5): 521-529. DOI: 10.19705/j.cnki.issn2096-5125.2024.05.005
Citation: ZHAO Chenhao, JIAO Zaibin, LI Chenghao, ZHANG Di, ZHANG Penghui. Power System Transient Stability Assessment Based on Two-tower Transformer Model[J]. Journal of Global Energy Interconnection, 2024, 7(5): 521-529. DOI: 10.19705/j.cnki.issn2096-5125.2024.05.005

基于双塔Transformer的电力系统暂态稳定评估

Power System Transient Stability Assessment Based on Two-tower Transformer Model

  • 摘要: 基于数据驱动的方法在电力系统暂态稳定评估的效率和精度提升上已经取得了一些研究成果。然而电力系统暂态过程中涉及多维度时序特征的变化,常规算法对特征的提取能力不足且缺乏可解释性,难以反映系统暂态过程中的动态行为。因此,构建了一个具有双塔结构的Transformer模型,以Transformer编码器作为特征提取器,考虑同一时刻不同维度的特征以及每一维度特征在不同时间步对系统暂态稳定的影响,并将其分别作为双塔结构Transformer模型的输入,训练和学习各特征通道和时间步对系统暂态稳定性的影响。通过融合机制,建立了由系统特征到系统稳定性的端到端的映射模型,实现了暂态稳定高精度的评估,并通过注意力热图可视化解释模型的决策过程。最后,在IEEE-39节点系统验证了所提方法的有效性。

     

    Abstract: Data-driven methods have achieved some research results in improving the efficiency and accuracy of power system transient stability assessment. However, the transient process of power system involves the change of multi-dimensional time series features. The conventional algorithm has insufficient ability to extract features and lacks interpretability, so it is difficult to reflect the dynamic behavior in the transient process of the system. Therefore, this paper constructs a Transformer model with a two-tower structure. The Transformer encoder is used as a feature extractor. Considering the characteristics of different dimensions at the same time and the influence of each dimension feature on the transient stability of the system at different time steps, it is used as the input of the Transformer model of the two-tower structure to train and learn the influence of each feature channel and time step on the transient stability of the system. Through the fusion mechanism, an end-to-end mapping model from system characteristics to system stability is established, and the high-precision evaluation of transient stability is realized. The decision-making process of the model is explained by attention to heat map visualization. The effectiveness of the proposed method is verified in the IEEE-39 node system.

     

/

返回文章
返回