张萍, 刘海涛. 基于逐次变分模态分解的飞轮-火电一次调频控制策略[J]. 全球能源互联网, 2024, 7(2): 166-178. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.006
引用本文: 张萍, 刘海涛. 基于逐次变分模态分解的飞轮-火电一次调频控制策略[J]. 全球能源互联网, 2024, 7(2): 166-178. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.006
ZHANG Ping, LIU Haitao. Flywheel-thermal Power Primary Frequency Regulation Control Strategy Based on Successive Variational Mode Decomposition[J]. Journal of Global Energy Interconnection, 2024, 7(2): 166-178. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.006
Citation: ZHANG Ping, LIU Haitao. Flywheel-thermal Power Primary Frequency Regulation Control Strategy Based on Successive Variational Mode Decomposition[J]. Journal of Global Energy Interconnection, 2024, 7(2): 166-178. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.006

基于逐次变分模态分解的飞轮-火电一次调频控制策略

Flywheel-thermal Power Primary Frequency Regulation Control Strategy Based on Successive Variational Mode Decomposition

  • 摘要: 随着新型电力系统的大力建设与推广,火电机组面临的调频压力增大,提出一种逐次变分模态分解的飞轮-火电一次调频控制策略。首先,以飞轮储能和火电机组为研究对象,建立考虑新能源占比的飞轮-火电一次调频模型;其次,将一次调频功率指令利用逐次变分模态方法分解,由火电机组响应分解后的低频功率指令,同时设计飞轮储能下垂优化控制方法,实现飞轮储能与火电机组响应频率变化的协同控制;最后在不同工况下仿真验证,结果表明所提策略可有效避免火电机组一次调频时的频繁出力,减小火电机组响应频率变化时的调控要求,同时可最大限度地利用飞轮储能调频容量并保证飞轮储能调频期间的运行安全,进一步提升了系统的频率响应能力。

     

    Abstract: With the rapid development and promotion of new power systems, the increasing frequency regulation pressure faced by thermal power units has led to the proposal of a flywheel-thermal power primary frequency control strategy using successive variational mode decomposition. Firstly, taking the flywheel energy storage and thermal power units as the research objects, a flywheel-thermal power primary frequency control model considering the proportion of new energy sources is established. Secondly, the primary frequency control power command is decomposed using the successive variational mode decomposition method, with the thermal power units responding to the decomposed low-frequency power command.At the same time, an optimized control method for flywheel energy storage droop is designed to achieve the coordinated control of flywheel energy storage and thermal power unit response to frequency changes. Finally, simulation verification under different operating conditions indicates that the proposed strategy effectively avoids frequent output changes during the primary frequency control of thermal power units, reduces the control requirements for thermal power units responding to frequency changes, and maximizes the utilization of flywheel energy storage frequency regulation capacity while ensuring the operational safety of flywheel energy storage during frequency regulation periods, further enhancing the system’s frequency response capability.

     

/

返回文章
返回