查世康, 黄陈蓉. 基于ConvNeXt和注意力机制的绝缘子自爆故障检测方法[J]. 宁夏电力, 2023, (3): 42-50.
引用本文: 查世康, 黄陈蓉. 基于ConvNeXt和注意力机制的绝缘子自爆故障检测方法[J]. 宁夏电力, 2023, (3): 42-50.
ZHA Shikang, HUANG Chenrong. A ConvNeXt and attention mechanism-based method for detecting spontaneous explosive faults in insulators[J]. Ningxia Electric Power, 2023, (3): 42-50.
Citation: ZHA Shikang, HUANG Chenrong. A ConvNeXt and attention mechanism-based method for detecting spontaneous explosive faults in insulators[J]. Ningxia Electric Power, 2023, (3): 42-50.

基于ConvNeXt和注意力机制的绝缘子自爆故障检测方法

A ConvNeXt and attention mechanism-based method for detecting spontaneous explosive faults in insulators

  • 摘要: 为了更加准确地识别和定位架空线路绝缘子的自爆故障,保障电力系统安全稳定运行,提出一种基于ConvNeXt和注意力机制的目标检测算法,可用于无人机、巡检机器人等设备拍摄的可见光图像中绝缘子自爆故障检测。首先,使用一种新型卷积神经网络ConvNeXt作为主干网络,使用1∶1∶1∶3的阶段模块数量比例,增强网络对抽象语义特征的提取能力;其次,使用跨阶段局部连接结构,减少网络参数量和计算复杂度,丰富网络梯度连接;最后,引入卷积注意力机制,增强网络对复杂背景中目标区域的感知能力。实验结果表明,改进后的绝缘子自爆故障检测模型的平均精度均值达到97.4%,相比基线YOLOv7提升了1.4%,能够有效实现绝缘子自爆缺陷的检测。

     

    Abstract: To ensure the safe and stable operation of the power system by accurately identifying and locating spontaneous explosive faults of overhead power line insulators, an object detection algorithm is proposed.Based on ConvNeXt and attention mechanism, this algorithm can effectively detect insulator spontaneous explosive faults from visible light images captured by equipment such as unmanned aerial vehicles and inspection robots.Firstly, ConvNeXt, a novel convolutional neural network, is used as the backbone network with 1∶1∶1∶3 stage module ratio to enhance the network′s ability to extract abstract semantic features.Secondly, a cross-stage local connection structure is used to reduce network parameters and computational complexity, thereby enriching network gradient connections.Finally, a convolutional attention mechanism CBAM is introduced to enhance the network′s ability to perceive target areas within complex backgrounds.Experimental results show that the improved insulator spontaneous explosive fault detection model achieves an average precision of 97.4%,an improvement of 1.4% over the baseline YOLOv7,effectively enabling the detection of spontaneous explosive faults in insulators.

     

/

返回文章
返回