徐波, 张晓晨. 基于最优传输分配的改进YOLOv5s的变电站屋面缺陷检测算法[J]. 宁夏电力, 2024, (2): 75-82.
引用本文: 徐波, 张晓晨. 基于最优传输分配的改进YOLOv5s的变电站屋面缺陷检测算法[J]. 宁夏电力, 2024, (2): 75-82.
XU Bo, ZHANG Xiaochen. An improved YOLOv5s algorithm for detecting substation rooftop defects based on optimal transport assignment[J]. Ningxia Electric Power, 2024, (2): 75-82.
Citation: XU Bo, ZHANG Xiaochen. An improved YOLOv5s algorithm for detecting substation rooftop defects based on optimal transport assignment[J]. Ningxia Electric Power, 2024, (2): 75-82.

基于最优传输分配的改进YOLOv5s的变电站屋面缺陷检测算法

An improved YOLOv5s algorithm for detecting substation rooftop defects based on optimal transport assignment

  • 摘要: 变电站屋面中的保温层、防水层、隔离层、隔汽层和找平层是房屋关键的结构和组成部分,这些层出现的不同表面缺陷,对变电站的性能、使用寿命和人员安全至关重要。本研究基于最优传输分配改进“你仅看一次”(you only look once, YOLOv5s)算法来对这些层的表面缺陷进行目标检测,提出了一种更准确和更高效的解决方案,最优传输分配算法通过优化标签分配,提供了比传统阈值方法更精确的匹配,并平衡了正负样本的学习。实验结果表明,最优传输分配优化后的YOLOv5s算法在房屋缺陷的目标检测中能够更全面地考虑图片信息和学习图形特征,减少了定位损失、目标损失和分类损失。此外,最优传输分配还能够提升精确率、召回率和平均准确率(mean average precision, MAP),表明模型的预测准确性、完整性和整体性能得到了改善。因此,使用YOLOv5s算法结合最优传输分配优化的方法对变电站屋面缺陷进行目标检测具有重要的实际应用价值。

     

    Abstract: The thermal insulation, waterproofing, isolation, vapor barrier, and leveling layers are critical structural and functional components of substation rooftops.Defects on these layers can significantly impact the performance, lifespan, and personnel safety of substations.This study proposes an improved target detection solution for these surface defects using a you only look once, YOLOv5s algorithm enhanced with the optimal transport assignment(OTA).The OTA algorithm refines label assignment, providing a more accurate match than traditional threshold methods and balancing the learning between positive and negative samples.Experimental results demonstrate that the OTA-optimized YOLOv5s algorithm can comprehensively utilize image information and learn geometric features, thereby reducing localization loss, object loss, and classification loss.Furthermore, the OTA enhances precision, recall, and mean average precision(MAP),indicating improved predictive accuracy, integrity, and overall performance of the model.Therefore, the application of the YOLOv5s algorithm combined with OTA optimization for rooftop defect detection in substations holds significant practical value.

     

/

返回文章
返回