卢奕睿, 施蕴曦, 蔡忆昔, 朱衎, 何勇, 周银. NTP再生DPF孔道内沉积颗粒物的理化特性[J]. 内燃机学报, 2023, 41(4): 307-314. DOI: 10.16236/j.cnki.nrjxb.202304036
引用本文: 卢奕睿, 施蕴曦, 蔡忆昔, 朱衎, 何勇, 周银. NTP再生DPF孔道内沉积颗粒物的理化特性[J]. 内燃机学报, 2023, 41(4): 307-314. DOI: 10.16236/j.cnki.nrjxb.202304036
Lu Yirui, Shi Yunxi, Cai Yixi, Zhu Kan, He Yong, Zhou Yin. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma[J]. Transactions of CSICE, 2023, 41(4): 307-314. DOI: 10.16236/j.cnki.nrjxb.202304036
Citation: Lu Yirui, Shi Yunxi, Cai Yixi, Zhu Kan, He Yong, Zhou Yin. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma[J]. Transactions of CSICE, 2023, 41(4): 307-314. DOI: 10.16236/j.cnki.nrjxb.202304036

NTP再生DPF孔道内沉积颗粒物的理化特性

Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma

  • 摘要: 利用低温等离子体(NTP)喷射系统对已捕集颗粒物(PM)的柴油机颗粒捕集器(DPF)进行了低温(100℃)再生试验,并对DPF孔道内不同再生阶段的颗粒沉积物取样分析,通过热重分析仪(TGA)、透射电子显微镜(TEM)及拉曼光谱分析仪探究了DPF孔道内颗粒沉积物的氧化特性、纳米结构及石墨化程度的理化特性变化规律.结果表明:随着NTP再生DPF阶段的推进,DPF孔道内颗粒沉积物中元素碳(EC)组分的最大氧化速率温度(Tmax)和燃尽温度(Te)均明显降低.颗粒物团絮结构中较为薄弱的部分在NTP氧化作用下先断裂,分解成链状结构;初级碳颗粒的平均微晶长度减小,平均微晶层面间距增大.由于NTP活性物质O不断键入PM中,在PM微晶边缘处生成新的含氧官能团,使得PM样品的无序程度及无定型碳含量增加,PM的氧化活性提高.

     

    Abstract: A low-temperature(100℃) regeneration test of a diesel particulate filter(DPF) which has captured particulate matter(PM) were carried out using a non-thermal plasma(NTP) injection system.The particles deposited in the DPF channels at different regeneration stages were sampled and analyzed by thermogravimetric analysis(TGA),transmission electron microscope(TEM) and Raman spectroscopy to investigate the oxidation characteristics,nanostructure and graphitization degree of particulate sediments.The results show that as the DPF regeneration process proceeds,the maximum oxidation rate temperature(Tmax) and burnout temperature(Te) of the elemental carbon(EC) components in the DPF channels are significantly reduced.The weaker part of the floc structure of PM is broken first during the oxidation of NTP and then is decomposed into chain structure.The average microcrystalline length of primary carbon particles decreases and the average microcrystalline layer spacing increases.As the NTP active substance O atoms are continuously bonded into the PM,new oxygen-containing functional groups are generated at the edge of PM microcrystalline,which increases the disorder degree and amorphous carbon content of PM samples and improves the oxidation activity of PM.

     

/

返回文章
返回