康宏伟, 李强, 于硕, 姚顺. 基于SA-PSO-BP神经网络算法的超短期风电出力预测[J]. 内蒙古电力技术, 2020, 38(6): 64-68. DOI: 10.3969/j.issn.1008-6218.2020.00.103
引用本文: 康宏伟, 李强, 于硕, 姚顺. 基于SA-PSO-BP神经网络算法的超短期风电出力预测[J]. 内蒙古电力技术, 2020, 38(6): 64-68. DOI: 10.3969/j.issn.1008-6218.2020.00.103
KANG Hongwei, LI Qiang, YU Shuo, YAO Shun. Ultra Short-Term Forecasting for Wind Power Output Based on SA-PSO-BP Algorithm[J]. Inner Mongolia Electric Power, 2020, 38(6): 64-68. DOI: 10.3969/j.issn.1008-6218.2020.00.103
Citation: KANG Hongwei, LI Qiang, YU Shuo, YAO Shun. Ultra Short-Term Forecasting for Wind Power Output Based on SA-PSO-BP Algorithm[J]. Inner Mongolia Electric Power, 2020, 38(6): 64-68. DOI: 10.3969/j.issn.1008-6218.2020.00.103

基于SA-PSO-BP神经网络算法的超短期风电出力预测

Ultra Short-Term Forecasting for Wind Power Output Based on SA-PSO-BP Algorithm

  • 摘要: 针对传统BP神经网络预测对初始权重敏感、易陷入局部最优解、计算精度不稳定的缺陷,提出在神经网络参数训练过程中,利用粒子群算法逐代更新粒子向最优解靠近,同时结合模拟退火算法跳出局部最优陷阱,找到全局最优网络参数的超短期风电预测方法;在预测过程中考虑多种环境因素,从而提高预测精度。以巴彦淖尔市某风电场为例,分别采用BP、PSO-BP、SA-PSO-BP神经网络算法对风电出力进行预测。结果表明,SA-PSO-BP算法均值预测误差最小,验证了改进后的SA-PSO-BP神经网络算法具有更高的预测精度。

     

    Abstract: Considering the traditional BP neural network prediction is sensitive to the initial weight and is easy to fall into the local optimal solution, an ultra short-term wind power output forecasting is proposed based on the particle swarm algorithm and the simulated annealing algorithm(SA-PSO) which is used to jump out of the local optimal trap and find the global optimal network parameter. The particle swarm algorithm is used to update the particles to the optimal solution during the neural network parameter training process. At the meantime, a variety of environmental factors are considered in order to improve the forecasting accuracy The BP, PSO-BP, and SA-PSO-BP neural network algorithms are used to predict the wind power output in a wind farm in Bayannur. The results show that the SA-PSO-BP algorithm has the smallest average prediction error. It verifies that the improved SA-PSO-BP neural network algorithm has higher prediction accuracy.

     

/

返回文章
返回