刘学芳, 于鲜莉, 陈波, 温欣, 王英杰, 王磊. 基于特征评估与改进SOA-DELM的变压器状态预测方法[J]. 内蒙古电力技术, 2025, 43(1): 80-89. DOI: 10.19929/j.cnki.nmgdljs.2025.0012
引用本文: 刘学芳, 于鲜莉, 陈波, 温欣, 王英杰, 王磊. 基于特征评估与改进SOA-DELM的变压器状态预测方法[J]. 内蒙古电力技术, 2025, 43(1): 80-89. DOI: 10.19929/j.cnki.nmgdljs.2025.0012
LIU Xuefang, YU Xianli, CHEN Bo, WEN Xin, WANG Yingjie, WANG Lei. Transformer State Prediction Method Based on Feature Evaluation and Improved SOA-DELM[J]. Inner Mongolia Electric Power, 2025, 43(1): 80-89. DOI: 10.19929/j.cnki.nmgdljs.2025.0012
Citation: LIU Xuefang, YU Xianli, CHEN Bo, WEN Xin, WANG Yingjie, WANG Lei. Transformer State Prediction Method Based on Feature Evaluation and Improved SOA-DELM[J]. Inner Mongolia Electric Power, 2025, 43(1): 80-89. DOI: 10.19929/j.cnki.nmgdljs.2025.0012

基于特征评估与改进SOA-DELM的变压器状态预测方法

Transformer State Prediction Method Based on Feature Evaluation and Improved SOA-DELM

  • 摘要: 为实现变压器油绝缘状态的准确预警与智能监测,以内蒙古地区部分电厂历年送检变压器油中溶解气体数据为检测样本展开分析,提出了一种基于特征评估与改进海鸥优化算法(Seagull Optimization Algorithm,SOA)优化深度强化学习机(Deep Extreme Learning Machine,DELM)模型的变压器油绝缘状态预测方法,对运行变压器油中溶解氢气与总烃含量进行准确预测。特征提取方面,通过计算输入向量与预测输出的互信息,评估特征间的关联程度,由关联度最高的特征构成最简输入向量;预测输出方面,通过增加附加变量,改进SOA参数选取方式,使算法快速收敛、避免陷入局部最优,实现DELM模型网络权重与隐藏层偏置的优化。最后,对比多种预测模型,依次分析7个电厂历史实测样本,验证该方法的适用性。

     

    Abstract: In order to realize the accurate early warning and intelligent monitoring of transformer oil insulation state, by analyzing the dissolved gas analysis data in transformer oil sent for inspection by some power plants in Inner Mongolia over the years, a transformer oil insulation state prediction method based on feature evaluation and improved SOA(Seagull Optimization Algorithm) optimized DELM(Deep Extreme Learning Machine) model is proposed, so as to accurately predict the dissolved hydrogen and total hydrocarbon content in transformer oil during operation. In terms of feature extraction, the correlation degree between the features is evaluated by calculating the mutual information between the input vector and the predicted output, and the feature with the highest correlation degree constitutes the simplest input vector. In terms of predicted output, by adding additional variable and improving the selection of the SOA parameters, the algorithm can converge quickly and avoid falling into local optimal, so as to realize the network weight and hidden layer bias optimization of DELM prediction model. Finally, compared with other prediction models, the historical samples of the seven power plants are analyzed in sequence, and the applicability of the proposed method is verified comprehensively.

     

/

返回文章
返回