Abstract:
Introduction Monopile foundation is currently the most widely used support structure for offshore wind farms. China's marine environment is mostly shallow water and medium water depth areas, which is obviously affected by nonlinear waves. Compared with the traveling wave, the focusing waves can form an impact force on the pile column in a short time, which is larger than the conventional wave force, and undermines the operational performance and fatigue life of the offshore wind turbines.
Method In this paper, NREL 5 MW monopile wind turbine study was carried out according to the pool model test method at the reduced scale of 1∶80. In combination with the marine environmental conditions of China's eastern coastal wind farms, we selected three typical focusing wave models, and recorded the changes of the wave runup around the monopile and the force on the bottom under different working conditions using wave height meter and force balance.
Result The results show that: the horizontal wave force on the pile foundation is significantly transient, and will suddenly increase when the focusing waves act on the monopile foundation, and the monopile foundation receives the reverse impact force at the trough of focusing wave.
Conclusion This paper reveals the change law of load on monopile foundation of offshore wind turbine caused by focusing wave, confirms the important influence of nonlinear wave on the dynamic characteristics of wind turbine foundation. The results are of high theoretical value and engineering application value.