Abstract:
Objective The purpose is to reveal the ways, extents and differences in how electricity consumption across various regions in China is influenced by temperature changes.
Method Data on monthly total social electricity consumption and corresponding average temperatures for 29 provinces municipalities and autonomous regions from 2008 to 2020 were collected. Monthly meteorological electricity consumption and relative meteorological electricity consumption were calculated for each province, along with trend coefficients and correlation coefficients with concurrent temperatures. National distribution maps of these parameters were drawn, and their spatial differences and possible causes were analyzed.
Result The results show that: (1) With rising summer temperatures, meteorological electricity consumption shows an increasing trend, especially significant in the eastern regions, Chongqing, and Shaanxi, while it is not significant in western and northern regions (such as Xinjiang, Qinghai, Gansu and Heilongjiang). The trend coefficients of relative meteorological electricity consumption also vary significantly among regions with a significant relationship, with an average trend coefficient of 1.5%/℃ in the three northeastern provinces, reaching 5%/℃ in Central China and Eastern China (excluding Fujian), and about 3%/℃ in Guangxi, Chongqing and Shaanxi. (2) Winter temperature changes also have a certain relationship with electricity consumption in various regions of China. When winter temperatures decrease, electricity consumption shows an increasing trend, and a significant relationship is observed in most areas of China, except for the southern coastal regions and Guizhou, with an extremely significant relationship extending from the northeast and north China to the southwest region. The trend coefficients of relative meteorological electricity consumption range from −2.0%/℃ to −7.5%/℃. (3) Spatial correlation analysis shows that summer meteorological electricity consumption and the trend coefficients of relative meteorological electricity consumption are significantly positively correlated with temperature. For each 1℃ increase in temperature, both meteorological electricity consumption and relative meteorological electricity consumption show a significant increase, while in winter, the correlation is weakly negative.
Conclusion These results have important reference value for energy demand forecasting, energy supply assurance, addressing climate change, achieving the carbon peaking and carbon neutrality goals.