张睿琪, 付乐天, 李梦骄, 褚旭, 余绍帅. 新能源高比例接入下电网无功电压优化控制研究综述[J]. 湖南电力, 2024, 44(2): 19-28.
引用本文: 张睿琪, 付乐天, 李梦骄, 褚旭, 余绍帅. 新能源高比例接入下电网无功电压优化控制研究综述[J]. 湖南电力, 2024, 44(2): 19-28.
ZHANG Rui-qi, FU Le-tian, LI Meng-jiao, CHU Xu, YU Shao-shuai. Review of Reactive Voltage Optimal Control Research in Power Grid With High Proportion Access of New Energy[J]. Hunan Electric Power, 2024, 44(2): 19-28.
Citation: ZHANG Rui-qi, FU Le-tian, LI Meng-jiao, CHU Xu, YU Shao-shuai. Review of Reactive Voltage Optimal Control Research in Power Grid With High Proportion Access of New Energy[J]. Hunan Electric Power, 2024, 44(2): 19-28.

新能源高比例接入下电网无功电压优化控制研究综述

Review of Reactive Voltage Optimal Control Research in Power Grid With High Proportion Access of New Energy

  • 摘要: 针对无功电压优化控制技术的应用,总结新能源高比例接入环境下电网无功电压优化建模方法,主要分为多时间尺度无功电压优化、分层分区电压优化、有功无功电压协调优化、基于模型预测控制的无功电压优化。分析无功电压优化求解数学方法,主要分为随机变量处理方法和无功电压优化模型求解方法。结合“源-网-荷-储”结构变化、能源互联网发展趋势和电力市场改革现状,从多维度“源-网-荷-储”协调电压控制、多异质能源协同优化控制、市场环境下“源-网-荷-储”协同优化出发,对未来研究进行了展望。

     

    Abstract: For the application of reactive voltage optimization and control techniques, the reactive voltage optimization modeling methods of power grid in the environment of high proportion of new energy access are summarized, which are mainly divided into multi-time scale reactive voltage optimization, hierarchical and partition voltage optimization, active and reactive voltage coordination optimization, and reactive voltage optimization based on model predictive control.The mathematical methods of reactive voltage optimization are briefly analyzed, which are mainly divided into random variable processing method and reactive voltage optimization model solving method.Combined with the structural changes of“source-grid-load-storage”,the development trend of energy internet and the current situation of power market reform, the future research is prospected from the perspective of multi-dimensional“source-grid-load-storage”coordinated voltage control, multi-heterogeneous energy collaborative optimization control, and“source-grid-load-storage”collaborative optimization under the market environment.

     

/

返回文章
返回