缪薇, 杨剑. 油浸式变压器故障智能诊断应用研究[J]. 黑龙江电力, 2023, 45(3): 264-267. DOI: 10.13625/j.cnki.hljep.2023.03.015
引用本文: 缪薇, 杨剑. 油浸式变压器故障智能诊断应用研究[J]. 黑龙江电力, 2023, 45(3): 264-267. DOI: 10.13625/j.cnki.hljep.2023.03.015
MOU Wei, YANG Jian. Applied research on intelligent diagnosis of oil-immersed transformer faults[J]. Heilongjiang Electric Power, 2023, 45(3): 264-267. DOI: 10.13625/j.cnki.hljep.2023.03.015
Citation: MOU Wei, YANG Jian. Applied research on intelligent diagnosis of oil-immersed transformer faults[J]. Heilongjiang Electric Power, 2023, 45(3): 264-267. DOI: 10.13625/j.cnki.hljep.2023.03.015

油浸式变压器故障智能诊断应用研究

Applied research on intelligent diagnosis of oil-immersed transformer faults

  • 摘要: 在电网系统中,油浸式变压器出现故障会导致供电线路受到影响,传统人工检测不能满足变压器故障检测需要,为此,开展油浸式变压器智能故障诊断应用研究。以某变电站变压器为例,选择BP和QIA-BP两种神经网络算法开展油浸式变压器故障诊断研究。比较BP神经网络检测与人工检测的效率和准确率,并将QIA-BP神经网络与BP神经网络两种算法对析出气体的体积分数跟踪效果进行对比。通过白盒测试检验QIA-BP智能诊断系统的准确性,验证了QIA-BP神经网络智能故障检测对于变压器故障诊断的有效性和优越性。

     

    Abstract: In the power grid system, the fault of oil-immersed transformer can affect the power supply lines. The traditional manual testing cannot meet the needs of transformer fault detection. Therefore, research on the application of intelligent fault diagnosis for oil-immersed transformer is carried out. Taking a substation transformer as an example, two neural network algorithms, BP and QIA-BP,are selected to carry out oil-immersed transformer fault diagnosis research. The efficiency and accuracy of BP neural network detection are compared with those of manual detection, and the tracking effect of QIA-BP neural network is compared with that of BP neural network. The accuracy of the QIA-BP intelligent diagnosis system is tested by white box test, which verifies the effectiveness and superiority of QIA-BP neural network intelligent fault detection for transformer fault diagnosis.

     

/

返回文章
返回