吕宗宝, 牛豪康, 谢子殿. 基于VMD-MFE-PNN的电机轴承故障诊断方法[J]. 黑龙江电力, 2023, 45(5): 387-392. DOI: 10.13625/j.cnki.hljep.2023.05.003
引用本文: 吕宗宝, 牛豪康, 谢子殿. 基于VMD-MFE-PNN的电机轴承故障诊断方法[J]. 黑龙江电力, 2023, 45(5): 387-392. DOI: 10.13625/j.cnki.hljep.2023.05.003
LU: Zong-bao, NIU Hao-kang, XIE Zi-dian. A fault diagnosis method for motor bearings based on VMD-MFE-PNN[J]. Heilongjiang Electric Power, 2023, 45(5): 387-392. DOI: 10.13625/j.cnki.hljep.2023.05.003
Citation: LU: Zong-bao, NIU Hao-kang, XIE Zi-dian. A fault diagnosis method for motor bearings based on VMD-MFE-PNN[J]. Heilongjiang Electric Power, 2023, 45(5): 387-392. DOI: 10.13625/j.cnki.hljep.2023.05.003

基于VMD-MFE-PNN的电机轴承故障诊断方法

A fault diagnosis method for motor bearings based on VMD-MFE-PNN

  • 摘要: 为提高电机轴承故障识别的准确性,提出一种基于变分模态分解(variational mode decomposition, VMD)、多尺度模糊熵(multi-scale fuzzy entropy, MFE)和概率神经网络(probabilistic neural network, PNN)相结合的滚动轴承故障诊断方法。通过优化后的遗传算法对VMD的2个重要参数进行寻优;然后利用VMD对各类轴承振动信号进行分解,根据峭度-相关准则选取包含较多故障特性的最优模态分量;计算该分量的多尺度模糊熵,并选取一定尺度的模糊熵值作为特征向量,输入到PNN中进行故障识别。经过实验验证,相较于VMD-PE-PNN、VMD-FE-PNN、VMD-MPE-PNN方法,基于VMD-MFE-PNN的电机轴承诊断方法更能准确地识别滚动轴承的故障类型。

     

    Abstract: In order to improve the accuracy of motor bearing fault identification, a rolling bearing fault diagnosis method based on Variational Mode Decomposition(VMD), Multi scale Fuzzy Entropy(MFE), and Probabilistic Neural Network(PNN) is proposed. The two important parameters of VMD are optimized using the optimized genetic algorithm; VMD is used to decompose various bearing vibration signals, and the optimal modal components containing more fault characteristics are selected based on the kurtosis correlation criterion; The multi-scale fuzzy entropy of the component is calculated, and a certain scale fuzzy entropy value is selected as the feature vector, which is input into PNN for fault identification. Compared to the VMD-PE-PNN, VMD-FE-PNN, and VMD-MPE-PNN methods, the motor bearing diagnosis method based on VMD-MFE-PNN can more accurately identify the fault types of rolling bearings.

     

/

返回文章
返回