蔡锦健, 王志平, 冯锡根. 基于RAHEKF的主动配电网动态估计方法研究[J]. 黑龙江电力, 2022, 44(3): 189-197,204. DOI: 10.13625/j.cnki.hljep.2022.03.001
引用本文: 蔡锦健, 王志平, 冯锡根. 基于RAHEKF的主动配电网动态估计方法研究[J]. 黑龙江电力, 2022, 44(3): 189-197,204. DOI: 10.13625/j.cnki.hljep.2022.03.001
CAI Jin-jian, WANG Zhi-ping, FENG Xi-gen. Research on dynamic estimation method of active distribution network based on RAHEKF[J]. Heilongjiang Electric Power, 2022, 44(3): 189-197,204. DOI: 10.13625/j.cnki.hljep.2022.03.001
Citation: CAI Jin-jian, WANG Zhi-ping, FENG Xi-gen. Research on dynamic estimation method of active distribution network based on RAHEKF[J]. Heilongjiang Electric Power, 2022, 44(3): 189-197,204. DOI: 10.13625/j.cnki.hljep.2022.03.001

基于RAHEKF的主动配电网动态估计方法研究

Research on dynamic estimation method of active distribution network based on RAHEKF

  • 摘要: 由于传统的扩展卡尔曼滤波(extended kalman fileter,EKF)存在线性化误差和易受不良数据影响,噪声会随着时间动态变化,难以准确获取。针对此,基于主动配电网下,提出了一种基于鲁棒自适应H∞扩展卡尔曼滤波(robust adaptive H∞extended Kalman filtering,RAHEKF)的方法。在原有自适应EKF的基础上,采用量测不确定性理论,引入测点评价函数,来降低不良数据的影响;将EKF量测函数的泰勒展开保留到二阶项,来降低线性化带来的误差,增强算法在系统突变下的预测能力。同时采用渐消记忆时变噪声,来模拟噪声的变化,增强算法对噪声动态变化的鲁棒性。在改进的IEEE 33节点系统分别对不良数据、系统负荷突变和分布式电源功率连续大范围变化的情景下,比较EKF和AHEKF,实验结果表明,RAFEKF具有更高的精度性和鲁棒性,能够很好地适应主动配电网灵活的运行场景。

     

    Abstract: According to the linearization error and the susceptibility to bad data in the traditional extended Kalman filter( EKF),the noise will dynamically change over time,and it is difficult to accurately obtain it. For this reason,based on the active distribution network,a method based on robust adaptive H∞ extended Kalman filtering( RAHEKF) is proposed. Based on the original adaptive EKF,the measurement uncertainty theory is adopted,and the measurement evaluation function is introduced to reduce the influence of bad data. The Taylor expansion of the EKF measurement function is retained to the second-order term to reduce the error caused by linearization and enhance the predictive ability of the algorithm under the sudden change of the system. At the same time,the fading memory time-varying noise is used to simulate the change of the noise,and the robustness of the algorithm to the dynamic change of the noise is enhanced. When the improved IEEE 33-node system responds to bad data,sudden changes in system load,and continuous large-scale changes in distributed power,the experimental results show that RAFEKF has higher accuracy and robustness,a and can well adapt to the flexible operation scenario of active distribution network.

     

/

返回文章
返回