冯喜春, 张菁, 王涛, 翟广心, 张章. 基于LSTM的数字孪生主动电网多维态势预测方法[J]. 河北电力技术, 2022, 41(4): 15-19,24.
引用本文: 冯喜春, 张菁, 王涛, 翟广心, 张章. 基于LSTM的数字孪生主动电网多维态势预测方法[J]. 河北电力技术, 2022, 41(4): 15-19,24.
FENG Xichun, ZHANG Jing, WANG Tao, ZHAI Guangxin, ZHANG Zhang. Research on Multidimensional Situation Prediction Method of Digital Twin Active Power Grid Based on Deep Learning[J]. HEBEI ELECTRIC POWER, 2022, 41(4): 15-19,24.
Citation: FENG Xichun, ZHANG Jing, WANG Tao, ZHAI Guangxin, ZHANG Zhang. Research on Multidimensional Situation Prediction Method of Digital Twin Active Power Grid Based on Deep Learning[J]. HEBEI ELECTRIC POWER, 2022, 41(4): 15-19,24.

基于LSTM的数字孪生主动电网多维态势预测方法

Research on Multidimensional Situation Prediction Method of Digital Twin Active Power Grid Based on Deep Learning

  • 摘要: 针对数字孪生主动电网实时精准映射需求,构建多维预测指标体系,建立基于LSTM的电网关键指标多维态势预测算法,实现数字孪生主动电网关键指标属性变化预测。首先,对负荷特征等4个关键指标数据收集,建立多维度体系预测模型,该多维指标可以对主动电网状态把控;其次,提出基于LSTM预测算法对多维度数据的特征学习拟合,并实现将下一阶段多维数据预测映射到电力数字孪生体,实现智慧能源系统运行规划同步实施与智能调控;最后,建立模拟测试模型,通过算例表明基于深度学习的数字孪生电网多维态势预测方法可以更好地对电网态势进行预测判别,为未来能源系统精确规划提供决策保障。

     

    Abstract: For the demand of real-time accurate mapping of digital twin active power grid,a multidimensional prediction index system is constructed,and a multidimensional state prediction algorithm for power grid key indicators based on LSTM is established to realize the change prediction of key indicator attributes of digital twin active power grid.Firstly,the prediction model of multidimensional system is established for the data collection of 4 key indicators such as load characteristics,which can effectively control the state of the active power grid;secondly,the feature learning fitting of multidiniensional data based on LSTM prediction algorithm is proposed,and the prediction of the next phase of multidimensional data is realized to map to the power digital twin to realize the synchronization and intelligent regulation of smart energy system operation planning and implementation;finally,the A simulation test model is established and arithmetic examples show that the deep learning-based digital twin power grid multidimensional situation sense prediction method can better predict and discriminate the power grid situation,so as to realize the accurate planning of future energy system to provide decision guarantee.

     

/

返回文章
返回