Multi-objective Optimal Scheduling of Multi-mode Wind-solar- thermal Power Storage System
-
摘要: 风光发电具有波动性和随机性,大规模并入电网影响电力系统的稳定性、安全性。建立考虑火电机组深度调峰和电储能寿命折损成本的风光火储能源系统模型,提出负荷跟踪、功率平滑两种出力模式。以风光火储各子系统出力为决策变量,建立了一种以风光火储能源系统运行成本最低、新能源消纳最多、环保性最好为目标的优化调度模型。通过NSGA-Ⅱ算法分别求解两种模式的调度模型,得到帕累托解集,最后基于AHP决策方法确定最优调度方案,实现能源系统出力跟踪负荷、能源系统功率平滑的功能,降低风光发电并入电网带来的冲击。仿真计算结果表明两种模式下的调度策略可以提高风光火储能源系统的经济性,增强新能源消纳能力,减少污染性气体排放,验证了优化调度模型的有效性。Abstract: Characterized by volatility and randomness, wind-solar power generation can affect power system stability and safety after its large-scale integration into power grid. We established a model of wind-solar-thermal power storage system considering deep peak load changing of thermal power generating unit and energy storage life collapse cost and proposed load tracking and power smoothing output modes. Taking each subsystem output of wind-solar-thermal power storage as the decision variable, we established an optimal scheduling model aiming at the lowest operation cost, the most dissipation of new energy, and the optimal environmental protection. And we solved the dispatching model of NSGA-Ⅱ algorithm to obtain pareto solution set. Finally, we used AHP decision method to determine the optimal dispatching scheme, realized output tracking loading and energy system power smoothing of energy system, and reduced the effect caused by the integration. The simulation results show that the scheduling strategy under two modes can improve the economy of wind-solar-thermal power storage system and the new energy dissipation capacity, reduce polluted gases emission, which verifies the effectiveness of the optimal scheduling model.
-
Keywords:
- wind-solar-thermal power storage system /
- load tracking /
- power smoothing /
- optimized scheduling /
- NSGA-Ⅱ /
- AHP
-
[1] 舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9.SHU Yinbiao,ZHANG Zhigang,GUO Jianbo,et al.Analysis on key factors of new energy consumption and research on solutions[J].Proceedings of the CSEE,2017,37(1):1-9 (in Chinese). [2] 杜婷.风光水火储联合系统多时间尺度协调调度研究[D].北京:华北电力大学,2020.DU Ting.Research on multi time scale coordinated dispatching of combined wind,water and fire storage system[D].Beijing:North China Electric Power University,2020 (in Chinese). [3] 曲烔辉.风光火储发电系统互补调度方法研究[D].北京:华北电力大学,2019.QU Tonghui.Research on the complementary scheduling method of wind,solar and thermal storage power generation system[D].Beijing:North China Electric Power University,2019 (in Chinese). [4] 李铁,李正文,杨俊友,等.计及调峰主动性的风光水火储多能系统互补协调优化调度[J].电网技术,2020,44(10):3622-3630.LI Tie,LI Zhengwen,YANG Junyou,et al.Complementary,coordinated and optimized dispatching of wind,water,fire and energy storage multi energy system considering peak shaving initiative[J].Power System Technology,2020,44(10):3622-3630 (in Chinese). [5] 檀勤良,丁毅宏,李渝,等.考虑经济-环境平衡的风光火联合外送调度策略多目标优化[J].电力建设,2020,41(8):129-136.TAN Qinliang,DING Yihong,LI Yu,et al.Multi-objective optimization of the dispatch strategy of combined wind power and fire transmission considering economic environmental balance[J].Electric Power Construction,2020,41(8):129-136 (in Chinese). [6] 叶泽,李湘旗,姜飞,等.考虑最优弃能率的风光火储联合系统分层优化经济调度[J].电网技术,2021,45(6):2270-2280.YE Ze,LI Xiangqi,JIANG Fei,et al.Hierarchical optimal economic dispatch of combined wind power,fire and storage system considering optimal energy rejection rate[J].Power System Technology,2021,45(6):2270-2280 (in Chinese). [7] 江朝朝.独立微电网系统优化设计与经济调度研究[D].武汉:武汉理工大学,2019.JIANG Chaochao.Research on optimal design and economic dispatch of independent micro grid system[D].Wuhan:Wuhan University of Technology,2019 (in Chinese). [8] 谢鹏,蔡泽祥,刘平,等.考虑多时间尺度不确定性耦合影响的风光储微电网系统储能容量协同优化[J].中国电机工程学报,2019,39(24):7126-7136.XIE Peng,CAI Zexiang,LIU Ping,et al.Collaborative optimization of energy storage capacity of wind power storage microgrid system considering the influence of multi time scale uncertainty coupling[J].Proceedings of the CSEE,2019,39(24):7126-7136(in Chinese). [9] HAGHDAR K.Optimal DC source influence on selective harmonic elimination in multilevel inverters using teaching-learning based optimization[J].IEEE Transactions on Industrial Electronics,2020,67(2):942-949.
[10] 赵书强,吴杨,李志伟,等.考虑风光出力不确定性的电力系统调峰能力及经济性分析[J].电网技术,2022,46(5):1752-1761.ZHAO Shuqiang,WU Yang,LI Zhiwei,et al.Analysis of peak shaving capacity and economy of power system considering uncertainty of wind and power output[J].Power System Technology,2022,46(5):1752-1761 (in Chinese). [11] 彭道刚,张孟然,沈丛奇,等.考虑不同控制策略下的多能互补能源互联网优化调度[J].电力科学与技术学报,2022,37(1):17-28.PENG Daogang,ZHANG Mengran,SHEN Congqi,et al.Optimal scheduling of multi energy complementary energy internet considering different control strategies[J].Journal of Electric Power Science and Technology,2022,37(1):17-28 (in Chinese). [12] 秦泽宇,马瑞,张强,等.考虑风光互补的电力系统多目标随机优化发电方案研究[J].电力科学与技术学报,2015,30(3):53-60.QIN Zeyu,MA Rui,ZHANG Qiang,et al.Study on multi-objective stochastic optimal generation scheme of power system considering wind and solar energy complementarity[J].Journal of Electric Power Science and Technology,2015,30(3):53-60 (in Chinese). [13] 许丹,王斌,张加力,等.特高压直流外送风光火电力一体化调度计划模型[J].电力系统自动化,2016,40(6):25-29+57.XU Dan,WANG Bin,ZHANG Jiali,et al.Integrated dispatching planning model of UHV DC transmission,wind power,thermal power[J].Automation of Electric Power Systems,2016,40(6):25-29+57 (in Chinese). [14] BISWAS P,SUGANTHAN P,AMARATUNGA G.Optimal power flow solutions incorporating stochastic wind and solar power[J].Energy Conversion & Management,2017,148:1194-1207.
[15] WANG X,CHANG J,MENG X,et al.Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems[J].Applied Energy,2018,229:945-962.
[16] 李湃,方保民,祁太元,等.基于源-荷匹配的区域电网风/光/储容量配比优化方法[J].中国电力,2022,55(1):46-54.LI Pai,FANG Baomin,QI Taiyuan,et al.Optimization method of wind / light / storage capacity ratio of regional power grid based on source load matching[J].Electric Power,2022,55(1):46-54 (in Chinese). [17] 程临燕,冯艳虹,徐林.基于风光互补出力特性的可消纳容量研究[J].中国电力,2019,52(7):63-68.CHENG Linyan,FENG Yanhong,XU Lin.Study on the absorptive capacity based on the output characteristics of wind and solar complementary[J].Electric Power,2019,52(7):63-68 (in Chinese). [18] DUPIN N,ELHAZALI T.Parallel matheuristics for the discrete unit commitment problem with min-stop ramping constraints[J].International Transactions in Operational Research,2020,27(1):219-244.
[19] XU L,WANG Z,LIU Y.The spatial and temporal variation features of wind-sun complementarity in China[J].Energy Conversion and Management,2017,154:138-148.
[20] RABIEE A,MOHSENI-BONAB S.Maximizing hosting capacity of renewable energy sources in distribution networks:a multi-objective and scenario-based approach[J].Energy,2017,120:417-430.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0