魏健, 赵红涛, 刘敦楠, 加鹤萍, 王宣元, 张浩, 刘蓁. 基于注意力机制的CNN-LSTM短期电力负荷预测方法[J]. 华北电力大学学报(自然科学版), 2021, 48(1): 42-47.
引用本文: 魏健, 赵红涛, 刘敦楠, 加鹤萍, 王宣元, 张浩, 刘蓁. 基于注意力机制的CNN-LSTM短期电力负荷预测方法[J]. 华北电力大学学报(自然科学版), 2021, 48(1): 42-47.
WEI Jian, ZHAO Hongtao, LIU Dunnan, JIA Heping, WANG Xuanyuan, ZHANG Hao, LIU Zhen. Short-term Power Load Forecasting Method by Attention-based CNN-LSTM[J]. Journal of North China Electric Power University, 2021, 48(1): 42-47.
Citation: WEI Jian, ZHAO Hongtao, LIU Dunnan, JIA Heping, WANG Xuanyuan, ZHANG Hao, LIU Zhen. Short-term Power Load Forecasting Method by Attention-based CNN-LSTM[J]. Journal of North China Electric Power University, 2021, 48(1): 42-47.

基于注意力机制的CNN-LSTM短期电力负荷预测方法

Short-term Power Load Forecasting Method by Attention-based CNN-LSTM

  • 摘要: 精准的短期电力负荷预测可以保障电力系统的安全可靠、经济高效运行,传统预测方法无法满足高精度的负荷预测要求,而机器学习算法的广泛应用为短期负荷预测的精确方案。提出了一种基于注意力(Attention)机制的卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short-Term Memory,LSTM)短期电力负荷预测方法,该方法可以减少历史信息的丢失,实现短期电力负荷预测。考虑到电力负荷值在不同季节的特点,将预测方法设计为分季节进行短期电力负荷预测。最后,以我国某地区的负荷数据作为实例,将此预测方法与其他常用预测模型进行对比,实验结果表明基于注意力机制的CNN-LSTM模型在不同季节的电力负荷预测中均具有更高的预测精度。

     

    Abstract: Accurate short-term load forecasting can ensure the safe,reliable,economic and efficient operation of power system. Traditional forecasting methods cannot meet the requirements of high-precision load forecasting,while machine learning algorithm is widely used as the accurate scheme in short-term load forecasting. This paper presents a short-term load forecasting method based on attention mechanism( i. e. Convolutional Neural Network and Long Short-Term Memory model). The proposed method not only helps reduce the loss of historical information,but also realizes short-term load forecasting. Considering the seasonal characteristics of power load value,the forecasting method is designed to carry out short-term power load forecasting in different seasons. Finally,with load of a certain region in China as data sources,this forecasting method is compared with other commonly used forecasting models. The experimental results show that attention mechanism-based CNN-LSTM model has higher forecasting accuracy in different seasons.

     

/

返回文章
返回