梁贵书, 蒋铭珏. 有理幂次分数阶线性电路方程的W域解法[J]. 华北电力大学学报(自然科学版), 2021, 48(1): 56-61,84.
引用本文: 梁贵书, 蒋铭珏. 有理幂次分数阶线性电路方程的W域解法[J]. 华北电力大学学报(自然科学版), 2021, 48(1): 56-61,84.
LIANG Guishu, JIANG Mingjue. W-Domain Solution of Fractional Linear Circuit Equations with Rational Powers[J]. Journal of North China Electric Power University, 2021, 48(1): 56-61,84.
Citation: LIANG Guishu, JIANG Mingjue. W-Domain Solution of Fractional Linear Circuit Equations with Rational Powers[J]. Journal of North China Electric Power University, 2021, 48(1): 56-61,84.

有理幂次分数阶线性电路方程的W域解法

W-Domain Solution of Fractional Linear Circuit Equations with Rational Powers

  • 摘要: 电气工程领域中的很多设备都表现出分数阶的本质,充分利用分数阶微积分能更好地描述这种分数阶现象。对于分数阶电路,电路方程的求解是至关重要。对于含有多个分数阶幂次的电路方程,现有的方法求解非常困难。通过对传统的Laplace变换改进,提出了一种新的变换——W变换。这种变换可适用于有理幂次分数阶方程的求解。针对W域有理象函数的特点,给出了其部分分式展开形式,简化了时域解的表达式。最后,通过实例验证了方法的正确性以及可行性。

     

    Abstract: The phenomenon that fractional order is implied in many electrical engineering devices and system can be well described by fractional calculus. Equation solution is key to fractional circuit,but it is very difficult for existing methods to solve circuit equations with multiple fractional powers. This paper refined the traditional Laplace transform,and proposed a new method for fractional circuits—W transform,which is applied to solve the fractional circuits with rational powers. According to the characteristics of rational image functions in W domain,part of its fraction expansion method is given,which simplifies the equation of time-domain solution. Finally,examples are given to verify the correctness and feasibility of W transform.

     

/

返回文章
返回