栗然, 罗东晖, 李鹏程, 臧向迪, 张文昕, 祝晋尧, 严敬汝, 回旭. 基于宽度和深度模型以及残差网络的综合能源负荷短期预测[J]. 华北电力大学学报(自然科学版), 2023, 50(6): 21-30.
引用本文: 栗然, 罗东晖, 李鹏程, 臧向迪, 张文昕, 祝晋尧, 严敬汝, 回旭. 基于宽度和深度模型以及残差网络的综合能源负荷短期预测[J]. 华北电力大学学报(自然科学版), 2023, 50(6): 21-30.
LI Ran, LUO Donghui, LI Pengcheng, ZANG Xiangdi, ZHANG Wenxin, ZHU Jinyao, YAN Jingru, HUI Xu. Comprehensive Energy Load Short-term Forecasting Based on Wide&Deep and ResNet Network Framework[J]. Journal of North China Electric Power University, 2023, 50(6): 21-30.
Citation: LI Ran, LUO Donghui, LI Pengcheng, ZANG Xiangdi, ZHANG Wenxin, ZHU Jinyao, YAN Jingru, HUI Xu. Comprehensive Energy Load Short-term Forecasting Based on Wide&Deep and ResNet Network Framework[J]. Journal of North China Electric Power University, 2023, 50(6): 21-30.

基于宽度和深度模型以及残差网络的综合能源负荷短期预测

Comprehensive Energy Load Short-term Forecasting Based on Wide&Deep and ResNet Network Framework

  • 摘要: 针对用户级综合能源系统负荷波动大,能源耦合复杂的特点,提出一种基于深度和宽度模型(Wide&Deep)和残差网络(ResNet)框架并且采用完整集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, CEEMDAN)和主成分分析(Principal Components Analysis, PCA)的综合能源系统联合负荷预测方法。所提模型由宽度和深度两部分组成:深度部分参考ResNet拟合残差映射的思想将多个长短期神经网络(Long Short-Term Memory, LSTM)子层堆叠构建深度预测网络,深度部分数据在输入前采用CEEMDAN进行分解,并利用主成分分析对分解结果进行主要影响因素提取和排序,并通过对数据的梯级输入实现对不同信息密度数据的梯级利用;宽度部分则采用简单模型并对传统Wide&Deep-LSTM模型的Wide部分输入进行改进,有效降低了模型的训练难度。通过实际算例分析可知所提模型具有良好的预测精度和收敛速度。与常规模型相比,所提模型具有一定优越性。

     

    Abstract: Aiming at the characteristics of large load fluctuations and complex energy coupling in the user-level integrated energy system, we proposed a combined load forecasting method for integrated energy systems based on wide & deep and Residual Network(ResNet) framework, which adopted Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN) and Principal Component Analysis(PCA). The proposed model consists of two parts: width and depth. The data in the depth part were decomposed using CEEMDAN before input, and principal component analysis was used to extract and sort the main influencing factors of the decomposition results. The depth part of the model referred to the idea of ResNet, stacked multiple LSTM sub-layers to build a depth prediction network, and realized the cascade processing of data with different information densities; the width part of the model adopted a simple model and improved the input of the Wide part of the traditional Wide&Deep-LSTM model, which effectively reduced the training difficulty of the model. The analysis of practical examples shows that the proposed model has good prediction accuracy and convergence speed. Compared with conventional models, the proposed model has certain advantages.

     

/

返回文章
返回