王永利, 蔡成聪, 张丹阳, 刘振, 李颐雯. 基于全生命周期理论的风力发电环境评估研究[J]. 华北电力大学学报(自然科学版), 2023, 50(6): 100-109.
引用本文: 王永利, 蔡成聪, 张丹阳, 刘振, 李颐雯. 基于全生命周期理论的风力发电环境评估研究[J]. 华北电力大学学报(自然科学版), 2023, 50(6): 100-109.
WANG Yongli, CAI Chengcong, ZHANG Danyang, LIU Zhen, LI Yiwen. Research on Environmental Assessment of Wind Power Generation Based on Whole Life Cycle Theory[J]. Journal of North China Electric Power University, 2023, 50(6): 100-109.
Citation: WANG Yongli, CAI Chengcong, ZHANG Danyang, LIU Zhen, LI Yiwen. Research on Environmental Assessment of Wind Power Generation Based on Whole Life Cycle Theory[J]. Journal of North China Electric Power University, 2023, 50(6): 100-109.

基于全生命周期理论的风力发电环境评估研究

Research on Environmental Assessment of Wind Power Generation Based on Whole Life Cycle Theory

  • 摘要: 采用全生命周期理论对2011-2020年的风力发电进行环境评估分析,研究耗材排放系数和风电装机容量对污染物排放与二氧化碳排放的影响程度,通过情景模拟分析法预测风力发电的全生命周期碳排放强度发展趋势,得到不同发展情景下的碳减排潜力。研究结果表明:(1)风力发电的各阶段排污强度对比为:风机制造阶段>风机运行维护与输配阶段>风电场建设阶段>风机拆除阶段>风机运输阶段。(2)风力发电的各阶段碳排放强度对比为:风机制造阶段>风机运行维护与输配阶段>风电场建设阶段>风机运输阶段>风机拆除阶段。(3)负碳材料使用占比与金属回收利用率对风力发电全生命周期CO2排放量影响较大。(4)风力发电的全生命周期碳排放强度需要降低至3.24 g/kW·h以下,才能助力电力行业实现碳中和。

     

    Abstract: We used the whole life cycle theory to analyze the environmental assessment of wind power generation from 2011 to 2020, and studied the sensitivity of consumables emission coefficient and wind power installed capacity on pollutant emissions and carbon dioxide emissions. In addition, we predicted the full life cycle carbon emission intensity development trend of wind power generation by scenario simulation analysis and obtained the carbon emission reduction potential under different development scenarios. The research results show that:(1) The comparison of pollutant discharge intensity in each stage of wind power generation is: fan manufacturing stage> fan operation maintenance and transmission and distribution stage> wind farm construction stage> fan dismantling stage> fan transport stage.(2) The comparison of carbon emission intensity in each stage of wind power generation is: wind turbine manufacturing stage> wind turbine operation maintenance and transmission and distribution stage> wind farm construction stage> wind turbine transportation stage> wind turbine dismantling stage.(3) The proportion of negative carbon materials used and the metal recycling rate have a greater impact on the CO2 emissions in the entire life cycle of wind power generation.(4) The full life cycle carbon emission intensity of wind power needs to be reduced to below 3.24 g/kW·h in order to help the power industry achieve carbon neutrality.

     

/

返回文章
返回