唐冬来, 李擎宇, 周强, 龚奕宇, 谢飞, 周朋, 康乐. 基于故障因子的用电采集设备状态评估方法[J]. 供用电, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011
引用本文: 唐冬来, 李擎宇, 周强, 龚奕宇, 谢飞, 周朋, 康乐. 基于故障因子的用电采集设备状态评估方法[J]. 供用电, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011
TANG Donglai, LI Qingyu, ZHOU Qiang, GONG Yiyu, XIE Fei, ZHOU Peng, KANG Le. State evaluation method of electric energy data acquire equipment based on fault factors[J]. Distribution & Utilization, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011
Citation: TANG Donglai, LI Qingyu, ZHOU Qiang, GONG Yiyu, XIE Fei, ZHOU Peng, KANG Le. State evaluation method of electric energy data acquire equipment based on fault factors[J]. Distribution & Utilization, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011

基于故障因子的用电采集设备状态评估方法

State evaluation method of electric energy data acquire equipment based on fault factors

  • 摘要: 用电采集设备是指对配电变压器、终端用户等电耗数据进行采集的装置,其运行状态将直接影响到客户用电数据采集的稳定性。为解决用电采集设备运行状态评估中,因缺少异常原因追溯分析而导致评估准确率低的问题,提出了一种基于故障因子的用电采集设备状态评估方法。首先,采用隐马尔可夫模型提取用电采集设备评估规则制度中的红线信息,并对用电采集设备数据进行预处理,消除异常数据对评估带来的影响;其次,通过对用电采集设备异常原因进行密度聚类,形成用电采集设备运行状态评估指标和故障影响因子权重,并进行评估;最后,在某省计量中心进行了验证,其运行状态评估准确率为99.56%。所提方法能有效提高用电采集设备的评估准确率。

     

    Abstract: Electric energy data acquire equipment(EDA) refers to devices that collect electricity consumption data from distribution transformers, end-users, and other devices. Its operating status will directly affect the stability of customer electricity consumption data collection. To solve the problem of low accuracy in the evaluation of the operation status of EDA due to the lack of abnormal cause tracing analysis, a fault factor based method for evaluating the status of EDA is proposed. Firstly, a hidden Markov model is used to extract the red line information in the evaluation rules and regulations of EDA, and the data of EDA is preprocessed to eliminate the impact of abnormal data on the evaluation; secondly, density clustering is performed on the abnormal causes of EDA to form evaluation indicators for the operation status of EDA and the weight of fault impact factors, and evaluation is carried out. Finally, it is validated at a metrology center in a certain province, and the accuracy of its operational status evaluation is 99.56%. The proposed method can effectively improve the evaluation accuracy of electricity collection equipment.

     

/

返回文章
返回