基于故障因子的用电采集设备状态评估方法

唐冬来, 李擎宇, 周强, 龚奕宇, 谢飞, 周朋, 康乐

唐冬来, 李擎宇, 周强, 龚奕宇, 谢飞, 周朋, 康乐. 基于故障因子的用电采集设备状态评估方法[J]. 供用电, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011
引用本文: 唐冬来, 李擎宇, 周强, 龚奕宇, 谢飞, 周朋, 康乐. 基于故障因子的用电采集设备状态评估方法[J]. 供用电, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011
TANG Donglai, LI Qingyu, ZHOU Qiang, GONG Yiyu, XIE Fei, ZHOU Peng, KANG Le. State evaluation method of electric energy data acquire equipment based on fault factors[J]. Distribution & Utilization, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011
Citation: TANG Donglai, LI Qingyu, ZHOU Qiang, GONG Yiyu, XIE Fei, ZHOU Peng, KANG Le. State evaluation method of electric energy data acquire equipment based on fault factors[J]. Distribution & Utilization, 2024, 41(9): 98-106. DOI: 10.19421/j.cnki.1006-6357.2024.09.011

基于故障因子的用电采集设备状态评估方法

基金项目: 

国家重点研发计划项目(2019YFB2103000)~~

详细信息
    作者简介:

    唐冬来(1980—),男,学士,高级工程师,研究方向为配电网量测、分析、电力系统及其自动化、电子技术等。李擎宇(1995—),男,硕士,工程师,研究方向为电网调度、电力系统及其自动化

    通讯作者:

    周强(1988—),男,硕士,工程师,研究方向为云计算、电力大数据应用、企业管理信息化咨询等

  • 中图分类号: TM73

State evaluation method of electric energy data acquire equipment based on fault factors

Funds: 

Supported by National Key R&D Program of China(2019YFB 2103000)

  • 摘要: 用电采集设备是指对配电变压器、终端用户等电耗数据进行采集的装置,其运行状态将直接影响到客户用电数据采集的稳定性。为解决用电采集设备运行状态评估中,因缺少异常原因追溯分析而导致评估准确率低的问题,提出了一种基于故障因子的用电采集设备状态评估方法。首先,采用隐马尔可夫模型提取用电采集设备评估规则制度中的红线信息,并对用电采集设备数据进行预处理,消除异常数据对评估带来的影响;其次,通过对用电采集设备异常原因进行密度聚类,形成用电采集设备运行状态评估指标和故障影响因子权重,并进行评估;最后,在某省计量中心进行了验证,其运行状态评估准确率为99.56%。所提方法能有效提高用电采集设备的评估准确率。
    Abstract: Electric energy data acquire equipment(EDA) refers to devices that collect electricity consumption data from distribution transformers, end-users, and other devices. Its operating status will directly affect the stability of customer electricity consumption data collection. To solve the problem of low accuracy in the evaluation of the operation status of EDA due to the lack of abnormal cause tracing analysis, a fault factor based method for evaluating the status of EDA is proposed. Firstly, a hidden Markov model is used to extract the red line information in the evaluation rules and regulations of EDA, and the data of EDA is preprocessed to eliminate the impact of abnormal data on the evaluation; secondly, density clustering is performed on the abnormal causes of EDA to form evaluation indicators for the operation status of EDA and the weight of fault impact factors, and evaluation is carried out. Finally, it is validated at a metrology center in a certain province, and the accuracy of its operational status evaluation is 99.56%. The proposed method can effectively improve the evaluation accuracy of electricity collection equipment.
  • [1] 王敏,郑鹏.基于机器视觉的拆回旧电能表参数信息检测技术研究[J].电测与仪表,2023,60(9):171-176.

    WANG Min,ZHENG Peng.Research on detection technology of parameter information of old electric meters removal based on machine vision[J].Electrical Measurement&Instrumentation,2023,60(9):171-176.

    [2] 唐冬来,李强,陈永东,等.基于电压时空聚合曲线的乡镇配电台区户变关系识别方法[J].电力系统自动化,2023,47(19):86-96.

    TANG Donglai,LI Qiang,CHEN Yongdong,et al.Identification method for relationship between residential electricity meters and distribution transformers in township distribution station area based on voltage spatial-temporal aggregation curves[J].Automation of Electric Power Systems,2023,47(19):86-96.

    [3] 申永鹏,孙嵩楠,赫婷,等.基于数字人民币的智能电表及实时电力交易新模式[J].电力系统保护与控制,2023,51(7):178-187.

    SHEN Yongpeng,SUN Songnan,HE Ting,et al.Real-time power trading mode based on an e-CNY smart electricity meter[J].Power System Protection and Control,2023,51(7):178-187.

    [4] 殷俊,巴挺杰,张建伟,等.基于北斗短报文的智能电表数据通信方法研究[J].电子设计工程,2023,31(17):159-163.

    YIN Jun,BA Tingjie,ZHANG Jianwei,et al.Research on data communication method of intelligent electricity meter based on Beidou short message[J].Electronic Design Engineering,2023,31(17):159-163.

    [5] 季海涛,张芳敏,黄柳胜,等.基于TLS1.3协议的智能电表安全设计[J].电子设计工程,2023,31(16):162-166.

    JI Haitao,ZHANG Fangmin,HUANG Liusheng,et al.Design of smart meter security based on TLS1.3 protocol[J].Electronic Design Engineering,2023,31(16):162-166.

    [6] 刘丰硕,刘然,董子慧.基于K-means聚类的智能电表异常动态数据检测方法[J].电子设计工程,2023,31(5):84-88.

    LIU Fengshuo,LIU Ran,DONG Zihui.Abnormal dynamic data detection method for smart meters based on K-means clustering[J].Electronic Design Engineering,2023,31(5):84-88.

    [7] 唐冬来,李玉,何为,等.基于改进多分类器的用户电表采集数据修复方法[J].电力系统自动化,2023,47(21):137-146.

    TANG Donglai,LI Yu,HE Wei,et al.Restoration method for user electricity meter collection data based on improved multiple classifiers[J].Automation of Electric Power Systems,2023,47(21):137-146.

    [8] 邢宇,鲍志威,孙艳玲,等.一种智能电能表自动化检定流水线表位在线异常检测方法[J].电测与仪表,2020,57(14):106-112.

    XING Yu,BAO Zhiwei,SUN Yanling,et al.Online anomaly detection method for meter positions in automatic verification assembly line of smart meter[J].Electrical Measurement&Instrumentation,2020,57(14):106-112.

    [9]

    KONG X Y,ZHANG X P,LU N,et al.Online smart meter measurement error estimation based on EKF and LMRLS method[J].IEEE Transactions on Smart Grid,2021,12(5):4269-4279.

    [10] 文耀宽,侯慧娟,王雍.基于Apriori和C5.0算法的智能电表故障预测[J].自动化仪表,2022,43(5):90-94,101.

    WEN Yaokuan,HOU Huijuan,WANG Yong.Fault prediction of smart electricity meter based on apriori and C5.0 algorithm[J].Process Automation Instrumentation,2022,43(5):90-94,101.

    [11] 李若茜,肖霞,梅能,等.基于Bayes和Bootstrap方法的智能电表可靠性评估[J].南方电网技术,2022,16(3):76-81.

    LI Ruoqian,XIAO Xia,MEI Neng,et al.Reliability evaluation of smart meters based on Bayes and bootstrap methods[J].Southern Power System Technology,2022,16(3):76-81.

    [12] 温克欢,冯俊豪,耿博,等.新型电力系统配用电精细化状态评估方法[J].无线电工程,2023,53(10):2410-2415.

    WEN Kehuan,FENG Junhao,GENG Bo,et al.Refined status evaluation method of power distribution and consumption for new power system[J].Radio Engineering,2023,53(10):2410-2415.

    [13] 徐焕增,孔政敏,王帅,等.基于动态线损及FMRLS算法的智能电表误差在线评估模型[J].中国电机工程学报,2021,41(24):8349-8358.

    XU Huanzeng,KONG Zhengmin,WANG Shuai,et al.Online error evaluation model of smart meter based on dynamic line loss and FMRLS algorithm[J].Proceedings of the CSEE,2021,41(24):8349-8358.

    [14] 吴正茂,李思海,吴勇,等.基于灰色理论的智能电表加速退化机理一致性分析[J].武汉大学学报(工学版),2021,54(11):1070-1076.

    WU Zhengmao,LI Sihai,WU Yong,et al.Consistency analysis of accelerated degradation mechanism of smart meter based on grey theory[J].Engineering Journal of Wuhan University,2021,54(11):1070-1076.

    [15] 张乐平,胡珊珊,梅能,等.智能电表可靠性研究综述[J].电测与仪表,2020,57(16):134-140.

    ZHANG Leping,HU Shanshan,MEI Neng,et al.Overview of research on reliability of smart meter[J].Electrical Measurement&Instrumentation,2020,57(16):134-140.

    [16]

    LIN Y,YANG B,GUO D Y,et al.Towards multilingual end-to-end speech recognition for air traffic control[J].IET Intelligent Transport Systems,2021,15(9):1203-1214.

    [17]

    MERCIER S,NUEL G.Duality between the local score of one sequence and constrained hidden Markov model[J].Methodology and Computing in Applied Probability,2022,24(3):1411-1438.

    [18]

    NICOL S,CROS M J,PEYRARD N,et al.FlywayNet:a hidden semi-Markov model for inferring the structure of migratory bird networks from count data[J].Methods in Ecology and Evolution,2023,14(1):265-279.

    [19]

    DUNN L,MELATOS A,ESPINOZA C M,et al.A new small glitch in Vela discovered with a hidden Markov model[J].Monthly Notices of the Royal Astronomical Society,2023,522(4):5469-5478.

    [20] 荆臻,王莉,杨梅,等.基于超状态隐马尔可夫模型的智能电能表非侵入式故障远程检定[J].电测与仪表,2023,60(2):196-200.

    JING Zhen,WANG Li,YANG Mei,et al.Non-intrusive remote error detection and localization for smart meters based on super-state hidden Markov model[J].Electrical Measurement&Instrumentation,2023,60(2):196-200.

    [21]

    WANG L,XU H Y,WANG X J,et al.Multisource uncertain dynamic load identification fitted by Legendre polynomial based on precise integration and the Savitzky-Golay filters[J].International Journal for Numerical Methods in Engineering,2022,123(20):4974-5006.

    [22]

    HE H T,WU L,HU X J.Warship formation extraction and recognition based on density-based spatial clustering of applications with noise and improved convolutional neural network[J].IET Radar,Sonar&Navigation,2022,16(12):1912-1923.

    [23]

    BAJAL E,KATARA V,BHATIA M,et al.A review of clustering algorithms:comparison of DBSCAN and K-means with oversampling and t-SNE[J].Recent Patents on Engineering,2022,16(2):17-31.

    [24] 雷达,常潇,刘子腾,等.基于DBSCAN聚类和数据筛选的系统谐波阻抗估算[J].电测与仪表,2022,59(1):93-98.

    LEI Da,CHANG Xiao,LIU Ziteng,et al.Estimation of system harmonic impedance based on DBSCAN clustering and data filtering[J].Electrical Measurement&Instrumentation,2022,59(1):93-98.

    [25] 郭志伟,徐子涛,刘波,等.基于最优特征量选取的开关柜故障判别方法研究[J].电测与仪表,2023,60(8):85-91.

    GUO Zhiwei,XU Zitao,LIU Bo,et al.Research on switchgear fault judgment method based on optimal feature quantity selection[J].Electrical Measurement&Instrumentation,2023,60(8):85-91.

    [26] 王珂瑶,王惠文,赵青,等.一种修正的马氏距离判别法[J].北京航空航天大学学报,2022,48(5):824-830.

    WANG Keyao,WANG Huiwen,ZHAO Qing,et al.A modified Mahalanobis distance discriminant method[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(5):824-830.

    [27]

    QI B,SUN X M,LIU B J,et al.Influencing factors of agricultural machinery accidents based on fuzzy fault tree analysis[J].Journal of Computational Methods in Sciences and Engineering,2022,22(3):871-881.

    [28]

    CHENG X Y,LONG M X,HE W,et al.Milling fault detection method based on fault tree analysis and hierarchical belief rule Base[J].Computer Systems Science and Engineering,2023,46(3):2821-2844.

    [29]

    LI H,YAZDI M,HUANG C G,et al.A reliable probabilistic risk-based decision-making method:Bayesian technique for order of preference by similarity to ideal solution(B-TOPSIS)[J].Soft Computing,2022,26(22):12137-12153.

    [30]

    SINGH A,MAJUMDER P,BERA U K.Prediction of polypropylene business strategy for a petrochemical plant using a technique for order preference by similarity to an ideal solution-based artificial neural network[J].Polymer Engineering&Science,2022,62(4):1096-1113.

    [31] 杨挺,张璐,张亚健,等.基于信息熵计算模型的电力信息物理系统融合控制方法[J].电力系统自动化,2021,45(12):65-74.

    YANG Ting,ZHANG Lu,ZHANG Yajian,et al.Fusion control method for cyber-physical power system based on information entropy calculation model[J].Automation of Electric Power Systems,2021,45(12):65-74.

    [32]

    ANTUNES J,GUPTA R,MUKHERJEE Z,et al.Information entropy,continuous improvement,and US energy performance:a novel stochasticentropic analysis for ideal solutions(SEA-IS)[J].Annals of Operations Research,2022,313(1):289-318.

    [33] 齐山成,史志鸿,马临超,等.输电线路主成分状态量风险信息熵的检修计划研究[J].电力系统保护与控制,2020,48(1):96-101.

    QI Shancheng,SHI Zhihong,MA Linchao,et al.Study of maintenance schedule for the risk information entropy of principle component state of transmission line[J].Power System Protection and Control,2020,48(1):96-101.

    [34] 许丹,李游,李贺龙.基于联合分布适配的智能电表运行状态评价[J].北京航空航天大学学报,2022,48(4):674-681.

    XU Dan,LI You,LI Helong.Operating status evaluation of smart electricity meters based on joint distribution adaption[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(4):674-681.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 刊出日期:  2024-09-04

目录

    /

    返回文章
    返回