王金锋, 任正某, 格根敖其, 孙毅, 郑顺林. 考虑数据耦合性的分布式风光联合预测方法[J]. 供用电, 2023, 40(9): 74-82,90. DOI: 10.19421/j.cnki.1006-6357.2023.09.010
引用本文: 王金锋, 任正某, 格根敖其, 孙毅, 郑顺林. 考虑数据耦合性的分布式风光联合预测方法[J]. 供用电, 2023, 40(9): 74-82,90. DOI: 10.19421/j.cnki.1006-6357.2023.09.010
WANG Jinfeng, REN Zhengmou, GEGEN Aoqi, SUN Yi, ZHENG Shunlin. A distributed wind-solar joint prediction method considering data coupling[J]. Distribution & Utilization, 2023, 40(9): 74-82,90. DOI: 10.19421/j.cnki.1006-6357.2023.09.010
Citation: WANG Jinfeng, REN Zhengmou, GEGEN Aoqi, SUN Yi, ZHENG Shunlin. A distributed wind-solar joint prediction method considering data coupling[J]. Distribution & Utilization, 2023, 40(9): 74-82,90. DOI: 10.19421/j.cnki.1006-6357.2023.09.010

考虑数据耦合性的分布式风光联合预测方法

A distributed wind-solar joint prediction method considering data coupling

  • 摘要: 高精度风光联合预测是充分发挥风光互补特性的重要前提。基于风电光伏的耦合关系,建立了分布式风光联合预测方法。首先,考虑地理位置、气象等因素对风光出力的影响,分析风电光伏出力耦合性。其次,建立了最优组内方差算法,进行异常数据的识别与处理。然后,提出了基于改进注意力机制和长短期记忆法的风光联合预测模型,能够有效地提取风光间的耦合关系并进行精准预测。最后,通过仿真验证了所提方法能够有效提高风光预测的准确性。

     

    Abstract: High precision wind-solar joint prediction is an important premise to give full play to the wind-solar complementary characteristics. Based on the coupling relationship between wind and PV, a distributed wind and PV joint prediction method is established in this paper. Firstly, considering the influence of geographical location, meteorological and other factors on the wind and solar power output, the coupling of wind power and photovoltaic output is analyzed. Secondly, the optimal intra-group variance algorithm is established to identify and process the abnormal data. Then, a combined prediction model based on improved attention mechanism and LSTM is proposed, which can effectively extract the coupling relationship between wind-solar and make accurate prediction. Finally, simulation results show that the proposed method can effectively improve the accuracy of landscape prediction.

     

/

返回文章
返回