杨正宇, 韩彤, 赵振刚. 基于ARIMA-GWO-SVR组合模型的线损率时序预测[J]. 供用电, 2022, 39(7): 58-63. DOI: 10.19421/j.cnki.1006-6357.2022.07.009
引用本文: 杨正宇, 韩彤, 赵振刚. 基于ARIMA-GWO-SVR组合模型的线损率时序预测[J]. 供用电, 2022, 39(7): 58-63. DOI: 10.19421/j.cnki.1006-6357.2022.07.009
YANG Zhengyu, HAN Tong, ZHAO Zhengang. Time series prediction of line loss rate based on ARIMA-GWO-SVR combined model[J]. Distribution & Utilization, 2022, 39(7): 58-63. DOI: 10.19421/j.cnki.1006-6357.2022.07.009
Citation: YANG Zhengyu, HAN Tong, ZHAO Zhengang. Time series prediction of line loss rate based on ARIMA-GWO-SVR combined model[J]. Distribution & Utilization, 2022, 39(7): 58-63. DOI: 10.19421/j.cnki.1006-6357.2022.07.009

基于ARIMA-GWO-SVR组合模型的线损率时序预测

Time series prediction of line loss rate based on ARIMA-GWO-SVR combined model

  • 摘要: 线损率是衡量电网经济性的重要指标,为了实现对电网线损率的时间序列预测,以差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型为基础,结合对非线性数据处理效果优异的支持向量回归(support vector regression,SVR)模型,提出了基于时间序列的线损率组合回归模型;利用基于灰狼优化算法(grey wolf optimizer,GWO)的SVR模型,对ARIMA预测的残差进行数据重构并重新进行建模预测,最终将2个模型预测结果相组合得到最终的预测结果。经过实例分析,组合模型的均方误差和平均绝对误差均优于单一的ARIMA模型和常用的ARIMA-SVR模型,具有优异的预测效果。

     

    Abstract: The line loss rate is an important indicator to measure the economics of the power grid.In order to realize the time series prediction of the line loss rate of the power grid, based on the autoregressive integrated moving average(ARIMA) model, combined with the support vector regression(SVR) model that has excellent nonlinear data processing effects, we propose a combined regression model of line loss rate based on the time series. The SVR model optimized by the gray wolf optimier(GWO) algorithm is used to reconstruct the residual data of the ARIMA prediction and re-model the prediction, and finally combine the prediction results of the two models to obtain the final prediction result.After an example analysis, the mean square error and the mean absolute error are all better than the single ARIMA model and the commonly used ARIMA-SVR model, which has excellent prediction effects.

     

/

返回文章
返回