董浩, 毛玲, 赵晋斌. 基于充电数据片段和GA-ELM的锂电池SOH在线估计[J]. 供用电, 2022, 39(7): 25-31. DOI: 10.19421/j.cnki.1006-6357.2022.07.004
引用本文: 董浩, 毛玲, 赵晋斌. 基于充电数据片段和GA-ELM的锂电池SOH在线估计[J]. 供用电, 2022, 39(7): 25-31. DOI: 10.19421/j.cnki.1006-6357.2022.07.004
DONG Hao, MAO Ling, ZHAO Jinbin. Online estimation of lithium battery SOH based on charging data fragment and GA-ELM[J]. Distribution & Utilization, 2022, 39(7): 25-31. DOI: 10.19421/j.cnki.1006-6357.2022.07.004
Citation: DONG Hao, MAO Ling, ZHAO Jinbin. Online estimation of lithium battery SOH based on charging data fragment and GA-ELM[J]. Distribution & Utilization, 2022, 39(7): 25-31. DOI: 10.19421/j.cnki.1006-6357.2022.07.004

基于充电数据片段和GA-ELM的锂电池SOH在线估计

Online estimation of lithium battery SOH based on charging data fragment and GA-ELM

  • 摘要: 锂电池的健康状态(state of health,SOH)对于电池安全稳定运行有着至关重要的作用。然而,电池在线运行时难以对其内阻和容量进行直接测量。因此,提出了一种基于充电数据片段和遗传算法优化的极限学习机(genetic algorithm-extreme learning machine,GA-ELM)的锂电池SOH估计方法。通过从电池的充电电压片段数据中提取不同电压区间内电压对时间的积分作为健康因子(health factor,HF),并用皮尔逊相关性分析法找到最优电压区间。最后,使用遗传算法寻找ELM网络结构参数的最优解集,建立起锂电池HF和SOH的估计模型,实现SOH的在线估计。使用NASA数据集对所提方法进行了验证,证明了所提方法具有很好的准确性和可靠性。

     

    Abstract: The state of health(SOH) of lithium batteries plays a crucial role in the safe and stable operation of batteries. However,it is difficult to directly measure the internal resistance and capacity of the battery when it is running online. Therefore, this paper proposes a lithium battery SOH estimation method based on charging data fragments and genetic algorithm optimization with extreme learning machine(GA-ELM). This paper extracts the integral of voltage versus time in different voltage intervals from the battery’s charging voltage segment data as the health factor(HF), and uses Pearson correlation analysis to find the optimal voltage interval. Finally, the GA algorithm is used to find the optimal solution set of ELM network structure parameters, and the estimation model of HF and SOH of lithium battery is established to realize the online estimation of SOH. This paper uses the NASA data set to verify the proposed method, which proves that the proposed method has good accuracy and reliability.

     

/

返回文章
返回