DOI: 10.13336/j.1003-6520.hve.20201359

不同故障工况下 C₄F7N/CO2 混合气体分解产物的实 验研究

杨 韬,张博雅,李兴文,李晨威

(西安交通大学电力设备电气绝缘国家重点实验室,西安710049)

摘 要: 近年来环保绝缘介质 C₄F₇N/CO₂ 混合气体凭借优良的电气性能和环保优势得到了广泛关注,具有替代 SF6 气体的潜能。针对 C₄F₇N/CO₂ 混合气体在实际运行中可能遇到的故障工况,进行了局部放电、局部过热和火花放 电下的分解实验,利用气相色谱质谱联用技术(GC-MS)对不同工况下分解产物进行了定性分析,提出了不同故障 工况下特征分解产物。实验结果表明: 3 种工况下的分解产物主要由饱和氟代烃(CF₄、C₂F₆、C₃F₈、C₄F₁₀)、不饱 和氟代烃(C₂F₄、C₃F₆、C₄F₈、i-C₄F₈)以及含氮化合物(C₂F₃N、C₃F₅N、C₂N₂、HCN)组成。根据不同工况下分解产 物的差异,提出局部放电下可将 HCN 和峰面积(C₃F₈)/离子峰面积(C₂F₃N)>1 作为识别的特征分解产物;局部过热 以 C₄F₈ 及其同分异构体 i-C₄F₈ 作为特征分解产物;以 CF₄和离子峰面积(C₃F₈)/离子峰面积(C₂F₃N)<1 同时作为火 花放电的特征分解产物;工频击穿以 C₄F₆ 和 C₃F₃N 作为特征分解产物。

关键词: SF₆ 替代气体; C₄F₇N/CO₂; 分解特性; 气相色谱质谱联用技术; 特征分解产物

Experimental Study of Decomposition Products of C₄F₇N/CO₂ Mixture Under Different Fault Conditions

YANG Tao, ZHANG Boya, LI Xingwen, LI Chenwei

(State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: In recent years, the environmentally friendly insulating medium C₄F₇N/CO₂ mixed gas has attracted wide attention due to its excellent electrical performance and environmental protection advantages, which has the potential to replace SF₆ gas. In this paper, the decomposition experiments of C₄F₇N/CO₂ mixture under partial discharge, partial overheating and spark discharge were carried out according to the fault conditions that may be encountered in actual operation. The decomposition products under different working conditions were qualitatively analyzed by gas chromatography-mass spectrometry (GC-MS), and the characteristic decomposition products under different working conditions were proposed. The results show that the decomposition products under three different conditions are mainly composed of saturated fluorocarbons (CF₄, C₂F₆, C₃F₈, C₄F₁₀), unsaturated fluorocarbons (C₂F₄, C₃F₆, C₄F₈, i-C₄F₈) and nitrogenous compounds (C₂F₃N, C₃F₅N, C₂N₂, HCN). According to the difference of decomposition products under different working conditions, HCN and peak area(C₃F₈)/peak area(C₂F₃N)>1 can be used as the characteristic decomposition products under partial discharge condition. Under the condition of spark discharge, CF₄ and peak area(C₃F₈)/peak area(C₂F₃N)<1 are taken as the characteristic decomposition products of spark discharge. Characteristic decomposition products of power frequency breakdown are C₄F₆ and C₃F₃N.

Key words: SF₆ substitute gas; C₄F₇N/CO₂; decomposition characteristics; gas chromatography-mass spectrometry; characteristic decomposition product

0 引言

六氟化硫(SF6)具有高度稳定的分子结构和优

异的电气性能,因此被广泛应用于气体绝缘电气设备。但是,SF6 具有极强的温室效应,其温室效应 潜能值(global warming potential,GWP)高达 CO₂的 23 500 倍,被《京都议定书》列为6种受限排放的 气体之一^[1]。因此,作为大量使用 SF6 气体的电力 行业,寻找环境友好、安全稳定、性能优良的 SF6

基金资助项目: 国家自然科学基金(51825702; 51907154)。 Project supported by National Natural Science Foundation of China (51825702, 51907154).

替代气体已成为目前研究的热点之一^[2]。近年来, 美国 3M 公司开发的氟腈类气体 C4F₇N 因其环保性 和高介电强度而受到广泛关注。C4F₇N 的 GWP 仅 有 SF₆ 的 1/11, 臭氧消耗潜能(ODP)为 0, 其绝缘强 度是 SF₆ 的两倍,但其液化温度较高(-4.7 °C),因 此不能单独作为气体绝缘介质使用,需要与干燥空 气、CO₂、N₂等缓冲气体混合。相比 N₂和干燥空气, CO₂ 的灭弧能力更为优异,在断路器和隔离开关设 备中使用 C4F₇N/CO₂ 混合气体也就更有优势。GE 公司已将 g³气体(C4F₇N/CO₂)应用于 420 kV GIL 和 145 kV GIS。与 SF₆气体相比,使用 g³气体可使 GWP 值降低 98%^[3]。目前国内外已就 C4F₇N 混合物的介 电击穿特性、分解特性、相容性和化学性质进行了 初步研究,结果表明 C4F₇N 是一种很有应用前景的 SF₆ 替代气体^[4]。

目前对于 SF₆气体在故障条件下分解特性已有 很多研究,并在设备故障检测中得到广泛应用。研 究故障工况下绝缘气体的分解产物,一方面为了掌 握分解产物的危害性,以便有针对性地做出防护措 施,保障运行和维护人员的健康和安全;另一方面 掌握不同工况下分解产物,可以用于检测电力设备 内部故障,识别故障类型和严重程度。气体绝缘电 气设备实际运行中某些薄弱部位在强电场的作用下 极易发生局部放电甚至火花放电;通流部件由于制 造工艺缺陷或外力影响导致接触不良、接触电阻变 大,流经数千安电流后发生局部过热。在以上电气 设备故障工况下,C4F₇N 及其混合气体可能会出现 分解。C4F₇N 及其混合气体的分解特性也是衡量其 是否具有 SF₆气体绝缘可替代性的重要指标。

在 C₄F₇N 及其混合气体的分解特性研究方面, Simka 等人报道了 C₄F₇N 及其混合物在局部放电中 分解产物的测量结果,显示了一些有毒的副产品 (C₂F₃N 和 C₂N₂)形成^[5]。Radisavljevic 等人采用气相 色谱--质谱联用技术和傅里叶变换红外光谱分析了 C₄F₇N 的电弧放电后混合物,发现了 C₂N₂、CF₃CN、 C₂F₅CN 等氰化物^[6]。Pohlink 等人用 FTIR 光谱分析 了 C₄F₇N/CO₂ 混合物的热分解^[7],检测到 C₂F₆、 COF₂、CF₃CN、C₂F₅CN 等产物。美国 GE 公司利 用傅立叶变换红外光谱仪(FTIR)定性分析了 C₄F₇N 气体在高温下的分解气体,并给出分解起始温度为 650 ℃^[8]。中国科学院电工研究所赵明月利用气相 色谱质谱联用技术研究了 C₄F₇N/空气混合气体的 电晕放电下分解产物的形成和变化规律^[9]。武汉大 学张晓星基于密度泛函理论并结合实验分析了 C4F7N/N2混合气体的分解路径^[10]。总体来说,目前 国内外针对C4F7N及其混合气体的研究只针对了单 一故障下的分解,其中有关火花放电下的分解研究 尚未有相关文献报道,鲜有人就不同故障工况下 C4F7N及其混合气体相关分解特性对比分析以及利 用特征分解组分对故障综合诊断进行研究。

因此,本文以C4F7N/CO2 混合气体为研究对象, 针对气体绝缘电气设备实际运行中可能出现的局部 放电、局部过热和火花放电故障工况,利用气相色 谱质谱联用仪(gas chromatography-mass spectrometer, GC-MS)检测分解产物,定性对比分析 3 种故 障工况下的分解产物,定量分析不同工况下 C4F7N 的分解程度,为故障工况下 C4F7N 分解产物的检测 提供借鉴。同时,提出能区分不同工况下的特征分 解产物,为基于分解气体判别故障类型和严重程度 提供重要的实验基础。

1 实验平台和实验方法

1.1 局部放电分解实验平台

局部放电实验所使用的平台如图 1 所示,局部 放电分解实验平台主要由变压器及其控制台组成, 变 压 器 额 定 容 量 为 50 kVA,额 定 电 压 为 0.22/100 kV,额定电流为 131.5/0.5 A,由额定电压 为 100 kV、阻值为 100 kΩ 保护电阻实现电路过流 保护,其中电极、检测阻抗和耦合电容(500 pF)组成 脉冲电流法检测局部放电量回路。电极采用铜制针 板电极来模拟局部放电,针电极直径 6 mm,长 62 mm,针尖部分长 10 mm,曲率半径 0.25 mm; 板电极平板部分直径 40 mm,厚度 20 mm;针--板 电极间距 10 mm。腔体采用 S304 不锈钢材料制作, 体积约 3 L,最高可承受 0.6 MPa 气压。

1.2 局部过热分解实验平台

局部过热实验所使用的平台如图 2 所示,本文 所设计并搭建的替代气体过热分解实验平台主要由 缓冲腔体(带数字压力表)、真空泵、发热体(管式加 热炉)和循环气泵系统组成,如图 2 所示。发热体主 要由加热炉膛和温度控制部分组成,加热炉膛包括 加热管路和隔热保护层,采用外径为 8 mm、内径 为4 mm耐高温的内外均抛光的 310S 不锈钢管作为 气体加热管路,加热管路与缓冲腔体连接采用双卡 套式密封。隔热保护层起到保温和避免实验人员烫 伤作用。温度控制部分包括热电偶温度传感器和比 例积分微分(PID)温度控制装置。腔体采用 S304 不 锈钢材料制作,体积约 3 L,最高可承受 0.6 MPa 气压,腔体连接气瓶和真空泵,气泵不断循环腔体 内混合气体使之通过管式炉受热分解。

1.3 火花放电分解实验平台

火花放电实验所使用的实验平台如图 3 所示, 本文所设计并搭建的替代气体火花放电分解实验平 台主要由变压器及其控制台,其额定容量为 50 kVA,额定电压为 0.22/100 kV,额定电流为 131.5/0.5 A,使用额定电压为 100 kV 阻值为 100 kΩ 保护电阻实现电路过流保护,使用额定电压 100 kV 容量为 0.1 μF 的储能电容 C_0 实现电路的充放电, 实验腔体采用 S304 不锈钢制作体积约 10 L、高压 棒电极采用金属钨制成,地电极采用铜制板电极。 高压继电器使用美国 ROSS 生产型号为 40-DT-40-0-3-ET/BD,稳定耐压 40 kV,定时器 和计数器构成高压继电器的控制系统,可用来调节 储能电容的充放电时间并记录放电次数。本文选择 充电时间 $t_{e=3}$ s,放电时间 $t_{e=3}$ s,放电周期 T=6 s。

实验中始终保持电容充电电压为 25 kV,火花 放电电压和放电电流通过高压探头和电流互感器测 得,固定电极间距为 3.5 mm。通过式(1)计算火花放 电能量,其中单次火花放电的能量 E 由放电电压 u(t) 和放电电流 i(t)在时间上的积分所得。选取完整的 10 次火花放电过程,计算放电能量平均值作为单次 火花放电的放电能量。图 4 所示为 0.15 MPa 下火花 放电电压、电流波形及 10 次放电能量分布,在上述 条件下计算得平均单次火花放电能量为 39.4 mJ。 0.3 MPa、0.4 MPa 下单次放电能量分别为 26.4 mJ 和 11.79 mJ。

$$E = \int u(t)i(t)dt \tag{1}$$

Fig.2 Thermal decomposition experimental platform

decomposition

discharge energy distribution

1.4 气体分解产物检测与实验方法

为了完整准确地检测 C₄F₇N/CO₂ 混合气体在以 上 3 种实验条件下的分解组分,采用气相色谱质谱 联用仪(GC-MS)对实验前后混合气体组分进行检 测。其中色谱仪型号为 Agilent 7890B,质谱仪型号 为 Agilent 5977B。采用六通阀定量环进样,选用纯 度大于 99.999%的氦气作为载气,色谱柱型号为 Agilent GS-GasPro(30 m×0.32 mm×0 μm), GC-MS 运行条件见表 1。

针对 C₄F₇N/CO₂ 混合气体的不同工况分解实 验,本文针对局部放电、局部过热和火花放电3种 气体绝缘电气设备运行中出现的故障工况,考虑工 程应用对 C4F7N 的饱和蒸气压和混合气体的绝缘性 能要求,在相同条件下,C4F7N体积分数为10%的 C4F7N/CO2 混合气体的击穿电压可达到纯 SF6 的 80%[11-14]。在最低使用温度为-15℃的限制下, 10%C4F7N/90%CO2 混合物的最大压力为 0.58 MPa^[15]。基于此, 文中固定 C₄F₇N 体积分数为 10%, CO2体积分数为90%, 选取不同的C4F7N/CO2 混合气体压力进行实验。每次实验前将气室内壁和 电极用无水酒精多次擦拭并烘干,局部过热中使用 的不锈钢加热管路每组实验结束后更换,配气时采 用纯度体积分数为 99.999%的 CO2 充入气室静置一 段时间抽真空,如此重复3次,排除固体颗粒和水 分的影响。根据道尔顿分压定律,将实验气体看作 理想气体,通过分压比确定混合气体比例,为保证 混合气体混合比例较为精确,先充入混合比例较小 的 C₄F₇N, 然后按分压比充入 CO₂, 混合后循环混 合 12 h 使气体充分混合。

其中局放和过热实验持续 72 h,每隔 12 h 采集 两次腔体内气体进行分析,火花放电持续放电 1000 次,每隔 200 次放电采集两次腔体内气体进行分析, 局放和火花放电实验结果采用针进样检测(进样气 压为大气压),局部过热实验结果采用阀进样检测 (进样气压与腔体内气压有关)。对分解后的气体组 分与美国标准技术研究院(NIST)数据库对比定性分 析,其中文中所选 C4F₇N 分解气体的质荷比及保留 时间如表 2 所示。

实验中所使用的 C₄F₇N 由 3M 公司生产,首先 对实验前混合气体的主要组分进行检测,检测结果 如图 5 所示,其中 C₃HF₇为 3M 公司公开的 C₄F₇N 气体中主要杂质。其中本文测得的 C₄F₇N 和其中杂 质 C₃HF₇的质谱结果如图 6 所示。

2 实验结果

2.1 局部放电下 C4F7N/CO2 混合气体分解产物

为了探索 C₄F₇N/CO₂ 混合气体在局部放电条件 下的分解产物,对气压 0.1、0.15 和 0.3 MPa,局部 放电量 100、150 和 200 pC 条件下的 10%C₄F₇N/

表1 GC-MS 法	运行条(牛
------------	------	---

Table 1 GC	C-MS operational conditions
分析条件	参数
色谱柱	GS-Gaspro30 m×0.32 mm(无涂层)
检测器	MSD
进样器温度/℃	100
定量环容量/µL	250
载气	He
分流比	100: 1
载气体积流量/(mL min ⁻¹)	1.0
	40 ℃保持 1 min, 以 20 ℃/min 速度升温至
分析程序	160 ℃,保持1min,以40 ℃/min速度升
	温至 240 ℃,保持 1 min

表 2 C4F7N 分解气体的质荷比

Table 2	Mass-to-charge ratio by-products of C ₄ F ₇ N			
组分	特征离子质荷比	保留时间/min		
СО	12	1.289		
CF_4	69	1.376		
C_2F_6	119	1.905		
C_3F_8	69	3.319		
C_2F_3N	76	3.660		
C_3F_6	131	4.099		
C_4F_{10}	219	4.938		
C ₃ F ₅ N	76	5.081		
C_2N_2	52	5.349		
C_4F_8	200	5.495		
i-C ₄ F ₈	200	6.143		
HCN	27	6.600		

90%CO₂混合气体进行持续 72 h 的局部放电分解实 验,其中每隔 12 h 检测一次产物并进行分析,图 7 为在 0.15 MPa、100 pC、C4F7N 体积分数 10%和局 部放电 72 h 后气体混合物的气相色谱图,主要分解 产物有 CO、CF4、C2F6、C2F4、C3F8、C2F3N、C3F6、C4F10、C3F5N、C2N2、HCN。

图 6 C₄F₇N 和 C₃HF₇的质谱图

Fig.6 Mass spectrograms of C₄F₇N and C₃HF₇

C₄F₇N/CO₂ mixed gas

图 8 是局部放电 0.15 MPa、10%C4F7N/90%CO2 混合气体主要分解气体的离子峰面积随时间和局放 量的变化趋势,可以看出随着局部放电时间的增加 各分解产物含量均随之增加,且并未出现饱和趋势。

图 9 是局部放电下 100 pC、10%C4F7N/90%CO2 混合气体主要分解气体的离子峰面积随时间和气压 的变化趋势,随着气压的升高各分解产物含量明显 降低,说明气压越高分解反应更难发生,高气压下 混合气体具有更高的稳定性。

2.2 局部过热下 C4F7N/CO2 混合气体分解产物

为探究 C₄F₇N/CO₂ 混合气体在局部过热条件下的主要分解产物,对气压 0.15、0.3 MPa 过热温度

300、500、700 ℃条件下的 10%C4F7N/90%CO2 混 合气体进行持续 72 h 的局部过热分解实验,其中每 隔 12 h 检测一次产物并进行分析。图 10(a)是局部 过热 300 ℃在 72 h 后气相色谱图,可以看出 0.15 MPa、10%C4F7N/90%CO2 混合气体在 300 ℃下 不发生分解。图 10(b)是局部过热 500 ℃在 72 h 后 气相色谱图,可以看出 500 ℃下出现少量分解,其 中主要分解产物有 C2F3N、C3F6、C4F10、C3F5N、 C4F8。图 10(c)是局部过热 700 ℃在 72 h 后气相色谱 图,可以看出 700 ℃下分解剧烈,其中主要分解产 物有 CO、CF4、C2F6、C2F4、CHF3、C3F8、C2F3N、 C3F6、C4F10、C3F5N、C2N2、C4F8 以及 i-C4F8。

图 11 为局部过热 500 ℃下过热时间和气压对 分解产物的影响,随着过热时间的增加各分解产物 含量增加,部分产物趋于饱和,随着气压的升高, C4F7N 的分解被抑制。图 12 为局部过热 700 ℃下过 热时间和气压对分解产物的影响,随着过热时间增 加,部分分解产物的分解逐渐趋于饱和,部分分解 产物被抑制。

2.3 火花放电下 C₄F₇N/CO₂ 混合气体分解产物

针对 C₄F₇N/CO₂ 混合气体在火花放电条件下的 主要分解产物,对气压 0.15 MPa、0.3 MPa 和 0.4 MPa, 10%C₄F₇N/90%CO₂ 混合气体进行持续 1000 次的火花放电分解实验,每放电 200 次检测一 次分解产物。

图 13 为 1000 次火花放电后 0.15 MPa, 10%C4F7N/90%CO2 混合气体的色谱图,其中主要分 解产物有 CO、CF4、C2F6、C2F4、C3F8、C2F3N、 C3F6、C3F5N、C2N2。

图 14 给出了火花放电下分解产物随火花放电 次数和气压的变化,随着放电次数增加各分解产物 含量增加且并未出现饱和,随着实验气体气压升高 各分解产物含量减少且无饱和现象,说明气压越小, 越有利于 C4F7N 的分解,分解程度越大,高气压下 混合气体具有更好的稳定性。

3 不同故障工况下实验结果对比分析

3.1 不同故障工况下 C₄F₇N/CO₂ 分解程度对比

针对 0.15 MPa、10%C₄F₇N/90%CO₂ 混合气体, 通过气相色谱质谱联用仪定性分析软件对不同工况 下的 C₄F₇N 分解实验进行数据分析,对气相色谱质 谱联用仪分解产物检测得到的总离子流色谱图 (total ion chromatogram, TIC)中C₄F₇N 对应的峰进行

Fig.9 Change of decomposition product content of C4F7N/CO2 mixed gas under different pressure

积分,最后选取不同工况下每组实验前和实验后的 峰面积(实验前和实验后对气体检测 3 次并求取峰 面积平均值),求得分解百分比如图 15 所示,局部 过热温度变化对 C₄F₇N 分解影响较大,在局部过热 温度 500~700 ℃之间 C₄F₇N 分解出现急剧增加,局 部放电和火花放电实验中分解较弱。

Fig.12 Thermal decomposition product content changes of C₄F₇N/CO₂ mixed gas at 700 °C under different pressure

实验中我们发现,在不同工况下,随着气压升高,分解反应更难发生。一方面,从气体放电角度 来看,气压越高,气体密度越大,电子与气体分子 碰撞的平均自由程越小,电离反应更难发生^[16];另 一方面,从化学反应速率角度来看,对于单个分子 的分解反应,随着气压升高,化学平衡向气体体积 减少的方向移动,分解反应更难发生。这一规律已 通化学动力学计算验证,随着气压的升高,C4F7N 的分解速率降低^[17]。在局部过热工况下,对C4F7N 在不同气压下随加热时间变化的分解程度进行归一 化处理(即用不同时间下 C4F7N 离子峰面积除以初 始的 C4F7N 的离子峰面积),得到如图 16 所示的结 果,可以看出,在不同温度下,均是高气压下 C4F7N 分解百分比较少。

Fig.14 Spark discharge decomposition product content changes of C₄F₇N/CO₂ mixed gas under different pressure

图 15 不同故障工况下 C4F7N 的分解百分比

Fig.15 Decomposition percentage of C₄F₇N under different fault conditions

Fig.16 Normalization of C₄F₇N content under different conditions of thermal decomposition

在火花分解实验中,由于控制了电容充电电压 保持 25 kV,在该条件下,气压越高,放电能量越 小,总的分解产物绝对含量也越小。由于火花放电 分解产物检测时采用的是针进样方式,取样气压为 大气压,为了对比不同气压下分解产物的绝对含量, 可以对典型分解物的离子峰面积乘以实验气压进行 折算。以特征分解产物 CF4 为例,如图 17 所示为考 虑气压折算后 CF4 含量随放电次数的变化趋势,可 以看出,气压越高,总的分解产物量减少。

3.2 不同故障工况下 C4F7N/CO2 特征分解产物

目前针对 C4F7N 及其混合气体分解路径以及不同工况分解机理的研究仍处于初步阶段,而针对不

同故障工况下的特征分解产物尚未有明确提出,故 对局部放电、局部过热和火花放电3种故障工况下 提出可能的特征分解产物以判别故障工况类型。

如表 3 所示为局部放电、局部过热和火花放电 工况下的分解产物(表中"√"代表该物质被检测到), 可以看出不同工况下的分解产物主要由饱和氟代烃 (CF4、C2F6、C3F8、C4F10)、不饱和氟代烃(C2F4、 C3F6、C4F8、i-C4F8)以及含氮化合物(C2F3N、C3F5N、 C2N2、HCN)组成。结合第 2 章中各工况下分解检 测结果可以看出局部放电和火花放电分解产物主要 以小分子质量的产物为主,其中饱和氟代烃和含氮 化合物产物种类相比于局部过热较多;相反,局部 过热分解产物主要以大分子质量的产物为主,其中 以 C3F6、C4F10、C4F8占绝大部分。因此可以通过一 种或多种分解产物表征故障工况类型。

就局部放电而言,相比于另外两种工况分解产 物不同的分解产物是 HCN,HCN 的生成可能是杂 质 C₃HF₇和 C₄F₇N 在局部放电环境下分解生成,相 比于局部过热生成 CHF₃,局部放电下 C₃HF₇中的 H 与 CN 生成 HCN,因此 HCN 可作为局部放电的特 征分解产物。

而在局部过热故障工况下,分解产物的类型与 过热温度也有着一定关系,因此不能以单一分解产 物作为判断依据,需要综合考虑不同温度下的实验 结果。结合图 10 不同温度下的局部过热分解色谱 图,在 500 ℃下,发现区别于其他故障工况的特征 产物 C4F8;温度升高除分解剧烈外,700 ℃下在生 成 C4F8 基础上又生成了 C4F8 的同分异构体 i-C4F8, 表 3 C₄F₇N/CO₂混合气体在不同故障工况下分解产物

 Table 3
 Decomposition products of C₄F₇N/CO₂ mixture under different fault conditions

	检测情况				
分解 产物	局部放电,	局部过热		火花放电,	工频击穿
	100 pC	500 ℃	700 ℃	39.4 mJ	2000 次
СО	\checkmark		\checkmark	\checkmark	\checkmark
CF_4	\checkmark		\checkmark	\checkmark	\checkmark
C_2F_6	\checkmark		\checkmark	\checkmark	\checkmark
C_2F_4	\checkmark		\checkmark	\checkmark	\checkmark
CHF ₃					
C_3F_8	\checkmark		\checkmark	\checkmark	\checkmark
C_2F_3N	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C_3F_6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C_4F_6					\checkmark
C_4F_{10}	\checkmark	\checkmark	\checkmark		\checkmark
C_3F_5N	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C_2N_2	\checkmark		\checkmark	\checkmark	\checkmark
C_4F_8		\checkmark			
i-C ₄ F ₈			\checkmark		
HCN	\checkmark				\checkmark
C_3F_3N					\checkmark

注:"√"代表该物质被检测到。

因此 C₄F₈和 i-C₄F₈可作为局部过热的特征产物,同时 i-C₄F₈可以判别 C₄F₇N/CO₂混合气体在局部过热 故障下故障温度的严重程度。

火花放电作为局部放电的发展,电极间能量注入更大,因此如图 13 所示分解产物相比局部放电主要以 CF4 这样的小分子质量产物为主,而局部过热故障工况下 CF4 在高温下生成量较少,因此 CF4 可用来区分火花放电故障工况;火花放电与局部放电的分解特征在于 C3F8和C2F3N两种分解产物峰面积比值,局部放电下峰面积(C3F8)/峰面积(C2F3N)>1,而火花放电下峰面积(C3F8)/峰面积(C2F3N)<1,这可能与两种故障下能量注入的大小影响了 C4F7N 分解反应速率有关。

除了本文提到的3种工况,工频击穿放电下的 分解产物在之前研究中已有报道^[18],分解产物已在 表3中对比。其中,C4F6和C3F3N产物可作为工频 击穿下的特征分解产物。另外,电弧放电下,由于 电弧温度较高,气体的分解过程与温度场,电磁场 等多场耦合作用相关,其分解产物的实验研究以及 理论研究也更加复杂。

4 结论

1) 局部放电下 C₄F₇N/CO₂ 混合气体主要分解 产物有 CO、CF₄、C₂F₆、C₂F₄、C₃F₈、C₂F₃N、C₃F₆、 C₄F₁₀、C₃F₅N、C₂N₂、HCN。局部过热下主要分解 产物有 CO、CF₄、C₂F₆、C₂F₄、C₃F₈、C₂F₃N、C₃F₆、 C₄F₁₀、C₃F₅N、C₂N₂、C₄F₈、i-C₄F₈。随着局部过热 温度从 500 ℃升高到 700 ℃混合气体的热分解逐渐 剧烈,温度升高对混合气体的分解路径和分解程度 影响较大。火花放电下主要分解产物有 CO、CF₄、 C₂F₆、C₂F₄、C₃F₈、C₂F₃N、C₃F₆、C₂F₆、C₂N₂

2)由于注入能量的不同,放电条件下的分解 主要以 CO、CF4、C₂F₃N、C₂N₂等小分子质量产物 为主,而局部过热下的分解主要以 C₃F₆、C₄F₁₀、 C₄F₈等稍大分子质量产物为主,这为不同工况下的 特征分解产物提供了基础。

3)3种故障工况下的分解实验都说明在高气压 下混合气体具有较好的稳定性。

4)针对不同工况下分解产物的差异,提出局 部放电条件下可将 HCN 和离子峰面积(C₃F₈)/离子 峰面积(C₂F₃N)>1 作为特征分解产物;局部过热条 件下以 C₄F₈及其同分异构体 i-C₄F₈ 作为特征分解产 物,同时 i-C₄F₈ 的生成又可判别故障温度的严重程 度;火花放电条件下以 CF₄ 和离子峰面积(C₃F₈)/离 子峰面积(C₂F₃N)<1 同时作为火花放电的特征分解 产物;工频击穿工况下,以 C₄F₆和 C₃F₃N 为特征分 解产物。

参考文献 References

 肖登明.环保型绝缘气体的发展前景[J].高电压技术,2016,42(4): 1035-1046.
 XIAO Dengming. Development prospect of gas insulation based on

environmental protection[J]. High Voltage Engineering, 2016, 42(4): 1035-1046.

- [2] 李兴文,赵 虎. SF₆ 替代气体的研究进展综述[J]. 高电压技术, 2016, 42(6): 1695-1701.
 LI Xingwen, ZHAO Hu. Review of research progress in SF₆ substitute gases[J]. High Voltage Engineering, 2016, 42(6): 1695-1701.
- [3] KIEFFEL Y, BIQUEZ F. SF₆ alternative development for high voltage switchgears[C] // Proceedings of 2015 IEEE Electrical Insulation Conference (EIC). Seattle, USA: IEEE, 2015: 379-383.
- [4] ZHANG B Y, XIONG J Y, CHEN L, et al. Fundamental physicochemical properties of SF₆-alternative gases: a review of recent progress[J]. Journal of Physics D: Applied Physics, 2020, 53(17): 173001.
- [5] SIMKKA P, DOIRON C, SCHEEL S, et al. Decomposition of alternative gaseous insulation under partial discharge[C] // 20th International Symposium High Voltage Engineering. Buenos Aires:[s. n.], 2017.
- [6] RADISAVLJEVIC B, STOLLER P C, DOIRON C B, et al. Switching

performance of alternative gaseous mixtures in high-voltage circuit breakers[C]//20th International Symposium on High Voltage Engineering. Buenos Aires:[s. n.], 2017.

- [7] POHLINK K, KIEFFEL Y, OWENS J, et al. Characteristics of fluoronitrile/CO₂ mixture-an alternative to SF₆[C] // CIGRE. Paris, France: CIGRE, 2016.
- [8] KIEFFEL Y. Characteristics of g³-an alternative to SF₆[C] // Proceedings of 2016 IEEE International Conference on Dielectrics (ICD). Montpellier, France: IEEE, 2016: 880-884.
- [9] 赵明月,韩 冬,荣文奇,等. 电晕放电下全氟异丁腈(C₄F₇N)与空气混合气体的分解产物规律及其形成原因分析[J]. 高电压技术,2018,44(10):3174-3182.
 ZHAO Mingyue, HAN Dong, RONG Wenqi, et al. Analysis of decomposition by-products and its formation mechanism of C₄F₇N/air mixed gases under AC corona discharge[J]. High Voltage Engineering, 2018,44(10):3174-3182.
- [10] LI Y, ZHANG X X, XIAO S, et al. Decomposition properties of C₄F₇N/N₂ gas mixture: an environmentally friendly gas to replace SF₆[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5173-5182.
- [11] 胡世卓,周文俊,郑 字,等. C4F₇N/CO₂和 C4F₇N/N₂混合气体工 频击穿实验与协同效应分析[J]. 高电压技术, 2019, 45(11): 3562-3570.
 HU Shizhuo, ZHOU Wenjun, ZHENG Yu, et al. Power frequency

breakdown experiments and synergistic effect analysis of C_4F_7N/CO_2 and C_4F_7N/N_2 mixtures[J]. High Voltage Engineering, 2019, 45(11): 3562-3570.

- [12] ZHANG B Y, UZELAC N, CAO Y. Fluoronitrile/CO₂ mixture as an eco-friendly alternative to SF₆ for medium voltage switchgears[J].
 IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1340-1350.
- [13] 刘一树,丁卫东,李志闯,等. C₄F₇N/CO₂混合气体中绝缘子工频 沿面闪络特性[J]. 高电压技术, 2019, 45(12): 3854-3859.
 LIU Yishu, DING Weidong, LI Zhichuang, et al. Surface flashover discharge under power frequency voltage in C₄F₇N/CO₂[J]. High Voltage Engineering, 2019, 45(12): 3854-3859.
- [14] ZHANG B Y, CHEN L, LI X W, et al. Evaluating the dielectric strength of promising SF₆ alternatives by DFT calculations and DC breakdown tests[J]. IEEE Transactions on Dielectrics and Electrical

Insulation, 2020, 27(4): 1187-1194.

[15] 李兴文,邓云坤,姜 旭,等.环保气体 C4FrN 和 C5F10O 与 CO2 混合气体的绝缘性能及其应用[J].高电压技术,2017,43(3): 708-714.

LI Xingwen, DENG Yunkun, JIANG Xu, et al. Insulation performance and application of environment-friendly gases mixtures of C_4F_7N and $C_5F_{10}O$ with $CO_2[J]$. High Voltage Engineering, 2017, 43(3): 709-714.

[16] 梁曦东,周远翔,曾 嵘.高电压工程[M].2版.北京:清华大学 出版社,2015.

LIANG Xidong, ZHOU Yuanxiang, ZENG Rong. High voltage engineering[M]. 2nd ed. Beijing, China: Tsinghua University Press, 2015.

- [17] CHEN L, ZHANG B Y, YANG T, et al. Thermal decomposition characteristics and kinetic analysis of C₄F₇N/CO₂ gas mixture[J]. Journal of Physics D: Applied Physics, 2020, 53(5): 055502.
- [18] ZHANG B Y, LI C W, XIONG J Y, et al. Decomposition characteristics of C₄F₇N/CO₂ mixture under AC discharge breakdown[J]. AIP Advances, 2019, 9(11): 115212.

杨韬

1996一,男,硕士生 主要从事新型环保气体分解方面的研究工作 E-mail: xjyangtao@xjtu.stu.edu.cn

YANG Tao

张博雅(通信作者) 1990一,男,博士,副教授 主要从事高电压与大电流、气体放电与等离子体 方面的科研工作 E-mail: zhangby@xjtu.edu.cn

ZHANG Boya Ph.D. Associate professor

Corresponding author

收稿日期 2020-09-29 修回日期 2020-11-20 编辑 曹昭君