赵鹏, 陈铮铮, 赵健康, 欧阳本红, 朱婷, 王曙鸿. 不同形式电压下高压直流电缆试验终端电场与空间电荷分布计算[J]. 高电压技术, 2021, 47(11): 4087-4094. DOI: 10.13336/j.1003-6520.hve.20200944
引用本文: 赵鹏, 陈铮铮, 赵健康, 欧阳本红, 朱婷, 王曙鸿. 不同形式电压下高压直流电缆试验终端电场与空间电荷分布计算[J]. 高电压技术, 2021, 47(11): 4087-4094. DOI: 10.13336/j.1003-6520.hve.20200944
ZHAO Peng, CHEN Zhengzheng, ZHAO Jiankang, OUYANG Benhong, ZHU Ting, WANG Shuhong. Calculation of Electric Field and Space Charge Distribution of HVDC Cable Test Terminal Under Different Voltages[J]. High Voltage Engineering, 2021, 47(11): 4087-4094. DOI: 10.13336/j.1003-6520.hve.20200944
Citation: ZHAO Peng, CHEN Zhengzheng, ZHAO Jiankang, OUYANG Benhong, ZHU Ting, WANG Shuhong. Calculation of Electric Field and Space Charge Distribution of HVDC Cable Test Terminal Under Different Voltages[J]. High Voltage Engineering, 2021, 47(11): 4087-4094. DOI: 10.13336/j.1003-6520.hve.20200944

不同形式电压下高压直流电缆试验终端电场与空间电荷分布计算

Calculation of Electric Field and Space Charge Distribution of HVDC Cable Test Terminal Under Different Voltages

  • 摘要: 试验终端是高压直流电缆电气性能试验的重要组成部分,该文基于交流电缆水终端建立了直流电缆水油终端模型,并得到了直流电场下的电场和电荷分布。为研究不同形式电压下高压直流水油终端中电场强度及其电荷密度分布,首先建立了水油终端电场-空间电荷仿真模型,该模型考虑了空间电荷的注入以及空间电荷和电场的相互作用;接着将仿真结果与试验进行对比,以验证模型的正确性;随后,基于该仿真模型分析了直流电压及6种不同形式冲击电压下水油终端的电场强度、电荷密度分布规律,并与GB/T 31489.1规定的6种冲击电压下水油界面处的场强与电荷密度进行比较。结果表明,雷电冲击电压在水油界面上产生的场强幅值最大,超过了水的击穿场强。因此水油终端不适用于雷电冲击试验。论文研究可为高压直流试验终端的研发提供参考。

     

    Abstract: The test terminal is an important part of the electrical performance test of HVDC. Based on the water terminal of AC cable, this paper creates the model of water-oil terminal of DC cable. In order to study the electric field and charge density distribution of the HVDC water-oil terminal under impulse voltage, a simulation model of the electric field-space charge of the water-oil terminal is established. The injection of space charge and the interaction between space charge and electric field are fully considered in this model. Secondly, the correctness of the model is verified by comparing with the experimental data. Finally, the electric field and the charge density distribution under six kinds of impulse voltages recommended by GB/T 31489.1 are studied. Meanwhile, the electric field intensity and charge density at the water-oil interface are compared. It is found that the lightning impulse voltage will generate the largest electric field at the water-oil interface among the six operating voltages, which exceeds the breakdown field intensity of water. Therefore, the water-oil terminal is not recommended to participate in the lightning impulse test. The research provides a valuable reference for design and development of the HVDC test terminal.

     

/

返回文章
返回