蒋兴良, 王茂政, 袁一钧, 刘琳, 李畅, 胡琴. 基于低居里点PTC材料的风机叶片防冰数值模拟及试验验证[J]. 高电压技术, 2024, 50(9): 4080-4090. DOI: 10.13336/j.1003-6520.hve.20231695
引用本文: 蒋兴良, 王茂政, 袁一钧, 刘琳, 李畅, 胡琴. 基于低居里点PTC材料的风机叶片防冰数值模拟及试验验证[J]. 高电压技术, 2024, 50(9): 4080-4090. DOI: 10.13336/j.1003-6520.hve.20231695
JIANG Xingliang, WANG Maozheng, YUAN Yijun, LIU Lin, LI Chang, HU Qin. Numerical Simulation and Experimental Validation of Wind Turbine Blades Anti-icing Based on Low Curie Point PTC Material[J]. High Voltage Engineering, 2024, 50(9): 4080-4090. DOI: 10.13336/j.1003-6520.hve.20231695
Citation: JIANG Xingliang, WANG Maozheng, YUAN Yijun, LIU Lin, LI Chang, HU Qin. Numerical Simulation and Experimental Validation of Wind Turbine Blades Anti-icing Based on Low Curie Point PTC Material[J]. High Voltage Engineering, 2024, 50(9): 4080-4090. DOI: 10.13336/j.1003-6520.hve.20231695

基于低居里点PTC材料的风机叶片防冰数值模拟及试验验证

Numerical Simulation and Experimental Validation of Wind Turbine Blades Anti-icing Based on Low Curie Point PTC Material

  • 摘要: 叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)材料进行风机叶片自适应电加热防冰的创新方法,通过原位聚合法成功制备了一种低居里点PTC材料,其居里温度点为1 ℃。随后,基于该材料的阻-温特性,建立了风机叶片的电加热防冰模型,并进行数值模拟。研究结果显示,当采用低居里点PTC材料进行风机叶片电加热防冰时,无需进行防冰区域的分区,就能使得防冰区域受热更加均匀。在一定的工作电压下,低居里点PTC材料在不同环境温度和风速下展现出自适应调节加热功率的能力,并且经过100次循环阻-温测试后,材料仍具有极强的自适应调节能力。最后,通过试验验证了材料的这种自适应调节能力。该研究结果为后续基于低居里点PTC材料的风机叶片防冰系统的研究奠定了坚实基础。

     

    Abstract: Blade icing can seriously impair the secure and stable operation of wind turbines. At present, electrothermal anti-icing is regarded as the most effective and dependable method for preventing ice accumulation on wind turbine blades. However, challenges persist, including uneven heating within the anti-icing area, localized ice formation, and an excessive number of partitions leading to an unnecessarily intricate anti-icing system. This study introduces an innovative approach that the PTC material is employed for adaptive electrothermal anti-icing of wind turbine blades. Through in-situ polymerization, a low Curie point PTC material with a Curie temperature point of 1 ℃ is successfully synthesized. Subsequently, based on the resistance-temperature characteristics of the material, an electrothermal anti-icing model for wind turbine blades is established and numerically simulated. The results indicate that when the low Curie point PTC material is used for electrothermal anti-icing of wind turbine blades, the anti-icing area can be heated more uniformly without the need for segmenting the anti-icing area. Under a certain operating voltage, the low Curie point PTC material demonstrates the ability to adaptively adjust the heating power across varying ambient temperatures and wind speeds. Impressively, even after undergoing 100 cycles of resistance-temperature testing, the material retains a robust adaptive adjustment ability. Eventually, the adaptive adjustment ability of the material is verified experimentally. The results of this research lay a solid foundation for the subsequent investigations on the wind turbine blade anti-icing system based on the low Curie point material.

     

/

返回文章
返回