周亚星, 孔力, 王佳蕊. 基于漂移扩散模型方程的IGCT电路模型[J]. 高电压技术, 2021, 47(1): 118-128. DOI: 10.13336/j.1003-6520.hve.20200302002
引用本文: 周亚星, 孔力, 王佳蕊. 基于漂移扩散模型方程的IGCT电路模型[J]. 高电压技术, 2021, 47(1): 118-128. DOI: 10.13336/j.1003-6520.hve.20200302002
ZHOU Yaxing, KONG Li, KONG Li. IGCT Circuit Model Based on Drift-diffusion Model Equations[J]. High Voltage Engineering, 2021, 47(1): 118-128. DOI: 10.13336/j.1003-6520.hve.20200302002
Citation: ZHOU Yaxing, KONG Li, KONG Li. IGCT Circuit Model Based on Drift-diffusion Model Equations[J]. High Voltage Engineering, 2021, 47(1): 118-128. DOI: 10.13336/j.1003-6520.hve.20200302002

基于漂移扩散模型方程的IGCT电路模型

IGCT Circuit Model Based on Drift-diffusion Model Equations

  • 摘要: 现有基于双极扩散方程(ADE)的功率半导体器件模型只能准确描述准中性区载流子分布,应用于高压器件建模时精度有限。提出一种基于漂移扩散模型(DDM)的集成门极换流晶闸管(IGCT)电路模型的建模方法以提高模型精度。通过分析发现,求解变量数量级相差较大,以及由高掺杂浓度决定的特征参数是影响模型特性的主要因素。由此,通过边界高掺杂区域的解析建模、简化基区求解的边界条件以及应用移动网格法求解DDM提高了模型的稳定性和计算速度。最后,IGCT双脉冲测试仿真与实验对比结果表明在仿真耗时接近的前提下,该方法相对于现有基于ADE模型可以更好地仿真器件在关断振荡以及穿通时的特性。

     

    Abstract: The existing power semiconductor device model based on ambipolar diffusion equation (ADE) can only describe the carrier distribution of quasi-neutral region precisely, leading to a limited accuracy when it is applied to modeling of high-voltage power device. In this study, a drift-diffusion model (DDM) based modeling approach with improved accuracy is proposed and applied to the integrated gate commutated thyristor (IGCT) circuit model.By characterizing the IGCT, the analyses reveal that there are the different orders of solving variables, and the characteristic parameters determined by high doping concentrations are the main factors.Moreover, the model stability and execution speed are improved by analytically modeling the highly doped region, by simplifying the boundary conditions of base region calculation, and by using a moving mesh method to solve the DDM equations. Finally, the simulation and experimental results of double-pulse test of IGCT show that, with high simulation speed comparable with ADE-based model, the proposed circuit model is superior to the existing models in its characteristic modeling at turn-off oscillation and punch-through stages.

     

/

返回文章
返回