王盼, 朱继赜, 叶高翔, 黄思雨, 阳磊, 徐虎. 基于超螺旋滑模控制的双有源桥DC-DC变换器电流应力优化控制[J]. 高电压技术, 2025, 51(3): 1295-1306. DOI: 10.13336/j.1003-6520.hve.20241662
引用本文: 王盼, 朱继赜, 叶高翔, 黄思雨, 阳磊, 徐虎. 基于超螺旋滑模控制的双有源桥DC-DC变换器电流应力优化控制[J]. 高电压技术, 2025, 51(3): 1295-1306. DOI: 10.13336/j.1003-6520.hve.20241662
WANG Pan, ZHU Jize, YE Gaoxiang, HUANG Siyu, YANG Lei, XU Hu. Current Stress Optimization Control Strategy for Dual Active Bridge DC-DC Converter Based on Super-twisting Sliding Mode Control[J]. High Voltage Engineering, 2025, 51(3): 1295-1306. DOI: 10.13336/j.1003-6520.hve.20241662
Citation: WANG Pan, ZHU Jize, YE Gaoxiang, HUANG Siyu, YANG Lei, XU Hu. Current Stress Optimization Control Strategy for Dual Active Bridge DC-DC Converter Based on Super-twisting Sliding Mode Control[J]. High Voltage Engineering, 2025, 51(3): 1295-1306. DOI: 10.13336/j.1003-6520.hve.20241662

基于超螺旋滑模控制的双有源桥DC-DC变换器电流应力优化控制

Current Stress Optimization Control Strategy for Dual Active Bridge DC-DC Converter Based on Super-twisting Sliding Mode Control

  • 摘要: 随着高比例新能源的接入,直流微电网系统中双有源桥DC-DC变换器,针对系统扰动时的电压波动、动态响应慢及效率降低等问题有待优化。该文在扩展移相下提出一种融合滑模控制和最小化电流应力的优化控制策略,提升效率的同时改善系统动态响应性能。鉴于传统滑模控制的抖振现象,采用超螺旋滑模算法去消除该现象,提高系统控制精度及性能。该文进行了仿真,同时设计并搭建了实验平台,实验结果表明:在输入电压突变、负载切换、参考电压改变时,控制系统均具有良好的动态、稳态性能,同时能有效减小电流应力,实现系统的多目标优化。仿真与实验验证了所提控制策略的可行性和有效性。

     

    Abstract: With the high proportion of new energy integration, the dual active bridge DC-DC converter in DC microgrid systems needs to be optimized to address issues such as voltage fluctuations, slow dynamic response, and reduced efficiency during system disturbances. This article proposes an optimized control strategy that combines sliding mode control and minimizing current stress under extended phase shifting, which improves system dynamic response performance while enhancing efficiency. Considering the chattering phenomenon of traditional sliding mode control, the super-twisting sliding mode algorithm is adopted to eliminate this phenomenon and improve the control accuracy and performance of the system. This article conducted simulations and designed and built an experimental platform. The experimental results show that the control system has good dynamic and steady-state performance when the input voltage suddenly changes, the load switches and the reference voltage changes. At the same time, it can effectively reduce current stress and achieve multi-objective optimization of the system. The feasibility and effectiveness of the proposed control strategy have been verified through simulation and experiments.

     

/

返回文章
返回