孙赫阳, 朱帝, 刘闯, 裴忠晨, 王菁月, 姜宇. 基于超局部模型的ISOP-DAB直流变压器无模型预测控制方法[J]. 高电压技术, 2025, 51(4): 1846-1856. DOI: 10.13336/j.1003-6520.hve.20241580
引用本文: 孙赫阳, 朱帝, 刘闯, 裴忠晨, 王菁月, 姜宇. 基于超局部模型的ISOP-DAB直流变压器无模型预测控制方法[J]. 高电压技术, 2025, 51(4): 1846-1856. DOI: 10.13336/j.1003-6520.hve.20241580
SUN Heyang, ZHU Di, LIU Chuang, PEI Zhongchen, WANG Jingyue, JIANG Yu. Model Free Predictive Control Method for ISOP-DAB DC Transformer Based on Ultra-local Model[J]. High Voltage Engineering, 2025, 51(4): 1846-1856. DOI: 10.13336/j.1003-6520.hve.20241580
Citation: SUN Heyang, ZHU Di, LIU Chuang, PEI Zhongchen, WANG Jingyue, JIANG Yu. Model Free Predictive Control Method for ISOP-DAB DC Transformer Based on Ultra-local Model[J]. High Voltage Engineering, 2025, 51(4): 1846-1856. DOI: 10.13336/j.1003-6520.hve.20241580

基于超局部模型的ISOP-DAB直流变压器无模型预测控制方法

Model Free Predictive Control Method for ISOP-DAB DC Transformer Based on Ultra-local Model

  • 摘要: 中低压直流配电系统中直流变压器(DC transformer,DCT)常采用模型预测控制(model predictive control,MPC)来改善系统的动态响应特性,但其参数依赖性强与传输功率不均衡是限制MPC发展的关键性因素。为此提出了一种无模型预测控制(model free predictive control,MFPC)方法,其具备参数不敏感与传输功率自均衡的优势。首先,建立双有源桥(dual active bridge,DAB)的超局部模型,通过辨识模型中的集总扰动,来实时计算无源器件与未建模部分参数,提高了控制系统的鲁棒性。然后,将集总扰动与输入均压集成到输出电压的离散模型,在不增加额外计算量的情况下,提高了DCT在参数不匹配工况下的输出电压精度与功率均衡能力。最后,搭建了一套120 V/600 W的实验样机,验证了所提控制方法的有效性和优越性。

     

    Abstract: In medium- and low-voltage DC distribution systems, the direct current transformer (DCT) often adopts model predictive control (MPC) to improve the dynamic response characteristics of the system. However, its strong parameter dependence and unbalanced transmission power are the key factors limiting the development of MPC. A model-free predictive control (MFPC) method is proposed for this purpose, which has the advantages of parameter insensitivity and transmission power self-balancing. Firstly, by establishing ultra-local model for a single dual active bridge (DAB), lumped disturbance is analyzed and parameters for passive components and unmodeled parts are calculated in real-time, thereby enhancing the robustness of the control system. Subsequently, the lumped disturbance and input voltage balancing are integrated into the discrete model of the output voltage, enabling the DCT to improve its output voltage accuracy and power balancing capabilities under parameter mismatch conditions without incurring additional computational costs. Finally, a 120 V/600 W experimental prototype was built to verify the effectiveness and superiority of the proposed control method.

     

/

返回文章
返回