陈仕启, 吴燕, 杨德昌, PaymanDehghanian. 基于负荷二次分解与特征处理的电力系统短期负荷预测[J]. 高电压技术, 2025, 51(5): 2571-2581. DOI: 10.13336/j.1003-6520.hve.20241311
引用本文: 陈仕启, 吴燕, 杨德昌, PaymanDehghanian. 基于负荷二次分解与特征处理的电力系统短期负荷预测[J]. 高电压技术, 2025, 51(5): 2571-2581. DOI: 10.13336/j.1003-6520.hve.20241311
CHEN Shiqi, WU Yan, YANG Dechang, Payman Dehghanian. Short-term Load Forecasting of Power System Based on Secondary Load Decomposition and Feature Processing[J]. High Voltage Engineering, 2025, 51(5): 2571-2581. DOI: 10.13336/j.1003-6520.hve.20241311
Citation: CHEN Shiqi, WU Yan, YANG Dechang, Payman Dehghanian. Short-term Load Forecasting of Power System Based on Secondary Load Decomposition and Feature Processing[J]. High Voltage Engineering, 2025, 51(5): 2571-2581. DOI: 10.13336/j.1003-6520.hve.20241311

基于负荷二次分解与特征处理的电力系统短期负荷预测

Short-term Load Forecasting of Power System Based on Secondary Load Decomposition and Feature Processing

  • 摘要: 为了解决构建新型电力系统时期电力负荷波动性和复杂性日益增强,准确预测困难的问题,提出了一种基于负荷二次分解与特征处理的融合负荷预测模型。首先利用经验小波变换(empirical wavelet transform, EWT)将电力负荷序列进行初步分解,并结合样本熵(sample entropy, SE)和奇异谱分析(singular spectrum analysis, SSA)对复杂度高的子序列其进行二次分解,以减少负荷数据的复杂性。在特征处理方面,采用距离相关系数计算各子序列与特征的相关性和特征间的冗余度,提取出最优特征集。同时,针对温度特征,提出了一种积温模糊修正模型,以增强模型对温度变化的敏感性。最终,将分解后的各负荷分量与优化后的特征集输入冠豪猪优化(crested porcupine optimizer, CPO)的双向时域卷积网络-双向门控循环单元(bidirectional temporal convolutional network-bidirectional gated recurrent unit, BiTCN-BiGRU)进行预测。采用某地电网实际数据进行算例分析,结果表明:与主流深度学习预测模型、特征处理方法和负荷分解方法相比,所提融合方法均方根误差最高分别降低了87.79%、32.23%和24.22%,表明所提方法具有较高的负荷预测精度。

     

    Abstract: In order to solve the problem of increasing power load volatility and complexity during the period of constructing the new power system, which makes it difficult to forecast accurately, a fusion load forecasting model based on load secondary decomposition and feature processing is proposed. First, empirical wavelet transform (EWT) is used to perform an initial decomposition of the power load series. Sample entropy (SE) and Singular Spectrum Analysis (SSA) are then applied for secondary decomposition of high-complexity sub-series, reducing the overall complexity of the load data. For feature processing, distance correlation is employed to calculate the correlation between each sub-series and the features, and to assess redundancy between features, extracting the optimal feature set. Additionally, for temperature features, a fuzzy processing method that considers temperature accumulation effects is proposed to enhance the model's sensitivity to temperature changes. Finally, the decomposed load components and optimized feature sets are input into the crested porcupine optimizer (CPO) bidirectional temporal convolutional network-bidirectional gated recurrent unit (BiTCN-BiGRU) for prediction. Using the actual data of a local power grid for example analysis, the results show that compared with the mainstream deep learning forecasting model, feature processing method, and load decomposition method, the proposed fusion method reduces the root mean square error by up to 87.79%, 32.23% and 24.22%, respectively, which indicates that the proposed method has a high load forecasting accuracy.

     

/

返回文章
返回