孔令国, 范乃文, 石振宇, 康建东, 韩子娇, 刘闯. 风-储-氢-燃机协同平抑功率波动运行配置策略[J]. 高电压技术, 2025, 51(5): 2125-2136. DOI: 10.13336/j.1003-6520.hve.20241124
引用本文: 孔令国, 范乃文, 石振宇, 康建东, 韩子娇, 刘闯. 风-储-氢-燃机协同平抑功率波动运行配置策略[J]. 高电压技术, 2025, 51(5): 2125-2136. DOI: 10.13336/j.1003-6520.hve.20241124
KONG Lingguo, FAN Naiwen, SHI Zhenyu, KANG Jiandong, HAN Zijiao, LIU Chuang. Wind-storage-hydrogen-gas Turbine Coordinated Operation Strategy for Power Fluctuation Mitigation[J]. High Voltage Engineering, 2025, 51(5): 2125-2136. DOI: 10.13336/j.1003-6520.hve.20241124
Citation: KONG Lingguo, FAN Naiwen, SHI Zhenyu, KANG Jiandong, HAN Zijiao, LIU Chuang. Wind-storage-hydrogen-gas Turbine Coordinated Operation Strategy for Power Fluctuation Mitigation[J]. High Voltage Engineering, 2025, 51(5): 2125-2136. DOI: 10.13336/j.1003-6520.hve.20241124

风-储-氢-燃机协同平抑功率波动运行配置策略

Wind-storage-hydrogen-gas Turbine Coordinated Operation Strategy for Power Fluctuation Mitigation

  • 摘要: 针对大规模风电并网所带来的波动性、消纳率和经济性等挑战,提出了一种以氢储能与燃机为主、电池储能为辅的风-储-氢-燃机协同平抑功率波动的运行配置策略。首先,建立了高动态适应性的SC-ALK电解槽制氢系统容量优化模型;其次,构建了考虑风-储-氢-燃机耦合特性的最小平准化度电成本目标函数,并提出了18种运行工况下的风-储-氢-燃机协同优化的运行控制策略。然后,将所提出的运行控制策略与目标函数相结合,构建经济容量配置模型,并采用改进的粒子群算法进行求解。最后,利用全国七大区域的典型风电数据进行算例分析,以验证该方法的有效性,并得出各地区风电场的经济容量配置方案。

     

    Abstract: To address the challenges posed by the volatility, absorption rate, and economic efficiency of large-scale wind power integration, this paper proposes a coordinated operation strategy for power fluctuation mitigation, in which hydrogen storage and gas turbines are predominantly used, with battery storage as a supplement. Firstly, a capacity optimization model for a highly dynamic hydrogen production system with adaptable SC-ALK electrolyzer is established. Secondly, a levelized cost of electricity (LCOE) objective function is constructed in which the coupling characteristics of wind-storage-hydrogen-gas turbine systems are taken into account, and an operational control strategy for 18 different conditions is proposed. Then, the proposed operational control strategy and objective function are combined to build an economic capacity allocation model, which is solved using an improved particle swarm optimization algorithm. Finally, typical wind power data from seven major regions in China are used for case analysis to verify the effectiveness of the proposed method and to determine the economic capacity allocation schemes for wind farms in each region.

     

/

返回文章
返回