起盼, 柯德平, 冯帅帅, 徐箭, 孙鑫. 新能源与储能参与的受端电网暂态电压-频率连锁紧急控制[J]. 高电压技术, 2025, 51(4): 1619-1631. DOI: 10.13336/j.1003-6520.hve.20241107
引用本文: 起盼, 柯德平, 冯帅帅, 徐箭, 孙鑫. 新能源与储能参与的受端电网暂态电压-频率连锁紧急控制[J]. 高电压技术, 2025, 51(4): 1619-1631. DOI: 10.13336/j.1003-6520.hve.20241107
QI Pan, KE Deping, FENG Shuaishuai, XU Jian, SUN Xin. Transient Voltage-Frequency Cascading Emergency Control for the Receiving-end Grid with New Energy and Energy Storage Participation[J]. High Voltage Engineering, 2025, 51(4): 1619-1631. DOI: 10.13336/j.1003-6520.hve.20241107
Citation: QI Pan, KE Deping, FENG Shuaishuai, XU Jian, SUN Xin. Transient Voltage-Frequency Cascading Emergency Control for the Receiving-end Grid with New Energy and Energy Storage Participation[J]. High Voltage Engineering, 2025, 51(4): 1619-1631. DOI: 10.13336/j.1003-6520.hve.20241107

新能源与储能参与的受端电网暂态电压-频率连锁紧急控制

Transient Voltage-Frequency Cascading Emergency Control for the Receiving-end Grid with New Energy and Energy Storage Participation

  • 摘要: 针对新能源高占比受端电网负荷中心的暂态电压问题,提出一种新能源场站与储能协同参与的暂态电压-频率连锁紧急控制方法,其特点在于新能源场站可以通过暂时性降低有功出力的方式来提升动态无功支撑能力,对于近区电网暂态电压安全具有显著意义。此外,新能源场站削减的有功出力可以由远方储能系统连锁补偿,从而避免系统出现频率安全问题。因此,基于暂态电压、频率安全评估指标,建立以紧急控制代价最小为目标的两阶段优化模型,对新能源场站和储能参与紧急控制的功率调节量进行优化计算。最后基于改进的IEEE 10机39节点模型开展算例验证,结果表明:所提两阶段优化计算能够准确高效地得到连锁紧急控制策略,该策略可以深度利用新能源场站的动态无功支撑能力来提升系统的暂态电压安全性,同时协同储能确保暂态电压控制期间系统的频率安全性。

     

    Abstract: In response to the transient voltage issues at the load center of power grid with a high proportion of new energy, this paper proposes a transient voltage-frequency cascading emergency control method that involves the coordinated participation of new energy stations and energy storage. The method is characterized by the ability of new energy stations to temporarily reduce active power output to enhance dynamic reactive power support capabilities, which is of significant importance for the transient voltage security of nearby grid areas. Furthermore, the reduced active power output from the new energy stations can be compensated in a cascading manner by remote energy storage systems to avoid frequency security issues in the system. Therefore, based on transient voltage and frequency security assessment indicators, this paper establishes a two-stage optimization model with the objective of minimizing the cost of emergency control. This model optimizes the power regulation quantities for the participation of new energy stations and energy storage systems in emergency control. Finally, case studies using an improved IEEE 10-machine 39-node model demonstrate that the proposed two-stage optimization calculation can accurately and efficiently derive cascading emergency control strategies. These strategies can deeply utilize the dynamic reactive power support capabilities of new energy stations to improve the transient voltage security of the system while coordinating energy storage to ensure frequency security during transient voltage control.

     

/

返回文章
返回