仲林林, 王逸凡, 任和, 吴奇, 韩汶轩, 陈洪洪. 人工智能驱动的低温等离子体数值模拟研究综述[J]. 高电压技术, 2024, 50(7): 2879-2893. DOI: 10.13336/j.1003-6520.hve.20241058
引用本文: 仲林林, 王逸凡, 任和, 吴奇, 韩汶轩, 陈洪洪. 人工智能驱动的低温等离子体数值模拟研究综述[J]. 高电压技术, 2024, 50(7): 2879-2893. DOI: 10.13336/j.1003-6520.hve.20241058
ZHONG Linlin, WANG Yifan, REN He, WU Qi, HAN Wenxuan, CHEN Honghong. AI-driven Low-temperature Plasma Simulation: A Review[J]. High Voltage Engineering, 2024, 50(7): 2879-2893. DOI: 10.13336/j.1003-6520.hve.20241058
Citation: ZHONG Linlin, WANG Yifan, REN He, WU Qi, HAN Wenxuan, CHEN Honghong. AI-driven Low-temperature Plasma Simulation: A Review[J]. High Voltage Engineering, 2024, 50(7): 2879-2893. DOI: 10.13336/j.1003-6520.hve.20241058

人工智能驱动的低温等离子体数值模拟研究综述

AI-driven Low-temperature Plasma Simulation: A Review

  • 摘要: 低温等离子体是等离子体的一种存在形式,在诸多工业领域有广泛应用。数值模拟是研究和分析低温等离子体的重要手段。近年来,随着人工智能技术的进步,人工智能驱动的数值模拟方法逐步在低温等离子体领域得到应用,有望克服传统数值模拟方法存在的缺陷。该文以低温等离子体为主要对象,首先介绍了主流的低温等离子体仿真模型,包括动理学模型、流体模型、化学动力学模型及混合模型,并从模型复杂度、数值计算量、参数一致性和结果可靠性4个方面分析了传统低温等离子体数值模拟方法面临的问题。然后,以数据驱动方法、物理-数据融合驱动方法以及数值模拟加速策略为分类准则,详细介绍并分析了当下人工智能驱动的低温等离子体数值模拟研究现状。最后从模型收敛性、泛化性角度总结了相关研究所面临的挑战,并指出了其进一步发展方向。

     

    Abstract: Low-temperature plasma (LTP) is a form of plasma that is widely used in many industrial fields. Numerical simulation is an important means of studying and analyzing LTP. In recent years, with the advancement of artificial intelligence (AI) technology, AI-driven numerical simulation methods have gradually been applied in the field of LTP, which is expected to overcome the shortcomings of traditional numerical simulation methods. This paper focuses on LTP and first introduces mainstream LTP simulation models, including kinetic models, fluid models, chemical dynamics models, and hybrid models. We analyzed the problems faced by traditional LTP numerical simulation methods from four aspects: model complexity, numerical computation, parameter consistency, and result reliability. Then, using data-driven methods, physics-informed data-driven methods, and numerical simulation acceleration strategies as classification criteria, we introduced and analyzed the current research status of AI-driven LTP numerical simulation in detail. Finally, from the perspective of convergence and generalization, we summarized the challenges faced by relevant research and proposes further development directions.

     

/

返回文章
返回