朱永利, 钱涛. 基于强化学习的局部放电深度诊断模型的自动剪枝与轻量化部署[J]. 高电压技术, 2024, 50(12): 5238-5247. DOI: 10.13336/j.1003-6520.hve.20240950
引用本文: 朱永利, 钱涛. 基于强化学习的局部放电深度诊断模型的自动剪枝与轻量化部署[J]. 高电压技术, 2024, 50(12): 5238-5247. DOI: 10.13336/j.1003-6520.hve.20240950
ZHU Yongli, QIAN Tao. Automatic Pruning and Lightweight Deployment of Reinforcement Learning-based Deep Diagnostic Model for Partial Discharge[J]. High Voltage Engineering, 2024, 50(12): 5238-5247. DOI: 10.13336/j.1003-6520.hve.20240950
Citation: ZHU Yongli, QIAN Tao. Automatic Pruning and Lightweight Deployment of Reinforcement Learning-based Deep Diagnostic Model for Partial Discharge[J]. High Voltage Engineering, 2024, 50(12): 5238-5247. DOI: 10.13336/j.1003-6520.hve.20240950

基于强化学习的局部放电深度诊断模型的自动剪枝与轻量化部署

Automatic Pruning and Lightweight Deployment of Reinforcement Learning-based Deep Diagnostic Model for Partial Discharge

  • 摘要: 目前在PC计算机或服务器端研发的各种基于局部放电信号采样数据的放电识别模型正判率高的几乎都是深度模型,这种模型的体量大,对计算机资源要求高,无法在局部放电检测装置上运行。为此,提出了基于强化学习的局部放电深度诊断模型的自动剪枝方法与模型轻量化部署方案。在服务器端,采用深度强化学习进行智能体训练,通过与原始局部放电诊断模型交互进行自动搜索进而确定每层的剪枝率;再根据几何中值的滤波器剪枝(FPGM)方法来判别滤波器的重要程度,实现参数的裁剪。仿真实验结果表明:该方法在轻量化系列模型MobileNetV1、V2以及ResNet50经典系列神经网络上取得了85%以上的参数压缩效果。将压缩后的轻量化模型转换成轻量级的ONNX格式,保存在一台便携式电脑上,并通过无线传输方式将模型植入到树莓派智能终端中,进而在智能终端上实现了局部放电的诊断实验模拟。测试结果表明:使用该方法部署的剪枝后局部放电诊断模型在内存占用、功耗以及推理时长等性能指标方面都有很大改善。

     

    Abstract: Various discharge identification models based on local discharge signal sampling data developed on PC computer or server side with high positive judgment rate are almost all deep models, which are large in volume and raise higher requirements for computer resources, and cannot be run on the local discharge detection device. For this reason, this paper proposes a reinforcement learning-based automatic pruning method for partial discharge depth diagnostic models with a model lightweight deployment scheme. On the server side, deep reinforcement learning is used for intelligent body training, and automatic search is performed by interacting with the original partial discharge diagnostic model, which in turn determines the pruning rate of each layer; and then the filter pruning according to the filter pruning by geometric median (FPGM) method is used to discriminate the importance of the filter and realize parameter pruning. Simulation experimental results show that the method achieves more than 85% parameter compression effect on the lightweight series models MobileNetV1 and V2 as well as the classic series neural networks of ResNet50. The compressed lightweight model is converted into lightweight ONNX format, saved on a portable computer, and implanted into a Raspberry Pi smart terminal through wireless transmission, which can realize the diagnostic experimental simulation of partial discharge on the smart terminal. The test results show that the local discharge diagnostic model which is deployed after pruning using this method has great improvements in performance indexes such as memory occupation, power consumption, and inference time.

     

/

返回文章
返回