刘会兰, 李想, 赵书涛, 朱鹏宇, 刘教民. 断路器控制线圈驱动铁芯动作特性及其电流-动作关联特征的机械故障辨识方法[J]. 高电压技术, 2025, 51(4): 1901-1911. DOI: 10.13336/j.1003-6520.hve.20240926
引用本文: 刘会兰, 李想, 赵书涛, 朱鹏宇, 刘教民. 断路器控制线圈驱动铁芯动作特性及其电流-动作关联特征的机械故障辨识方法[J]. 高电压技术, 2025, 51(4): 1901-1911. DOI: 10.13336/j.1003-6520.hve.20240926
LIU Huilan, LI Xiang, ZHAO Shutao, ZHU Pengyu, LIU Jiaomin. Mechanical Fault Identification Method Based on Action Characteristics of Circuit Breaker Control Coil Driving the Iron Core and Its Current-action Correlation Features[J]. High Voltage Engineering, 2025, 51(4): 1901-1911. DOI: 10.13336/j.1003-6520.hve.20240926
Citation: LIU Huilan, LI Xiang, ZHAO Shutao, ZHU Pengyu, LIU Jiaomin. Mechanical Fault Identification Method Based on Action Characteristics of Circuit Breaker Control Coil Driving the Iron Core and Its Current-action Correlation Features[J]. High Voltage Engineering, 2025, 51(4): 1901-1911. DOI: 10.13336/j.1003-6520.hve.20240926

断路器控制线圈驱动铁芯动作特性及其电流-动作关联特征的机械故障辨识方法

Mechanical Fault Identification Method Based on Action Characteristics of Circuit Breaker Control Coil Driving the Iron Core and Its Current-action Correlation Features

  • 摘要: 分合闸线圈上电驱动铁芯再触发操作机构传动部件顺序动作控制断路器分合闸,现有研究聚焦于提取分合闸线圈电流特征判别故障,铁芯动作与分合闸线圈电流关联机理不明。为此通过Lucas-Kanade光流法逐帧分析高速图像序列,由运动目标识别获得与控制线圈电流配合的铁芯动作轨迹,发现铁芯运动早于电流峰值,其运动速度、加速度和位移与线圈电流时序及其累积持续时间相关联。提出基于聚类动作特征表征故障程度、利用随机森林判断动作关联性电流特征对故障的敏感程度,建立基于分合闸线圈电流-铁芯特征联合分析的故障分类诊断框架,并通过实验模拟线圈电压异常、铁芯卡涩程度不同、线圈固定螺丝松动等故障进行验证,结果表明线圈电流-铁芯动作故障关联性诊断结果更为精确。

     

    Abstract: The circuit breaker operates by energizing the trip/close coil to drive the core, which then triggers the mechanical components to control the opening and closing actions.The existing research on the fault diagnosis of circuit breakers mainly focuses on extracting the current characteristics of the trip/close coil, but the relationship between the core movement and the coil current is not well understood. This paper uses the Lucas-Kanade optical flow method to analyze high-speed image sequences frame by frame, identifying the core movement trajectory in coordination with the coil current. The results show that the core motion precedes the current peak, and its speed, acceleration, and displacement are related to the coil current waveform and its cumulative duration. Moreover, a fault classification framework is proposed, combining the coil current and core movement features, using clustering to characterize fault severity and a random forest to assess the sensitivity of movement-current features to faults. Experiments simulating coil voltage anomalies, core jamming, and loose coil screws validate that the integrated current-core feature analysis enables more accurate fault diagnosis.

     

/

返回文章
返回