刘浩宇, 高树国, 臧谦, 郭猛, 张志刚, 代璐健. 融合离散节点温度与非侵入式POD方法的变压器绕组温度场快速计算[J]. 高电压技术, 2025, 51(1): 88-96. DOI: 10.13336/j.1003-6520.hve.20240904
引用本文: 刘浩宇, 高树国, 臧谦, 郭猛, 张志刚, 代璐健. 融合离散节点温度与非侵入式POD方法的变压器绕组温度场快速计算[J]. 高电压技术, 2025, 51(1): 88-96. DOI: 10.13336/j.1003-6520.hve.20240904
LIU Haoyu, GAO Shuguo, ZANG Qian, GUO Meng, ZHANG Zhigang, DAI Lujian. Fast Calculation of Transformer Winding Temperature Field by Integrating Discrete Node Temperatures with Non-invasive POD Method[J]. High Voltage Engineering, 2025, 51(1): 88-96. DOI: 10.13336/j.1003-6520.hve.20240904
Citation: LIU Haoyu, GAO Shuguo, ZANG Qian, GUO Meng, ZHANG Zhigang, DAI Lujian. Fast Calculation of Transformer Winding Temperature Field by Integrating Discrete Node Temperatures with Non-invasive POD Method[J]. High Voltage Engineering, 2025, 51(1): 88-96. DOI: 10.13336/j.1003-6520.hve.20240904

融合离散节点温度与非侵入式POD方法的变压器绕组温度场快速计算

Fast Calculation of Transformer Winding Temperature Field by Integrating Discrete Node Temperatures with Non-invasive POD Method

  • 摘要: 为提高油浸式电力变压器绕组温度的计算效率,提出了一种融合离散节点温度与非侵入式本征正交分解(proper orthogonal decomposition,POD)的快速计算方法。首先,采用POD方法建立绕组温度计算的降阶模型,获得反映绕组温度场分布特征的降阶模态;然后,选取场域内若干离散节点,建立节点温度与绕组工况相关的响应面模型;最后,借助降阶计算模型构建离散节点温度与绕组全场域温度之间的数学关系,实现从绕组工况到离散节点温度,再到全场域温度的快速反演。利用该文所提方法对110 kV油浸式变压器2维绕组传热模型进行分析,算例结果表明,温度场的最大平均绝对误差不超过0.49 K,最大平均相对误差不超过2.69%,热点温度最大误差不超过1.72 K;绕组温度分布计算时间仅为0.78 s,相较于全阶计算效率提升近千倍,充分说明了该算法的准确性与高效性,对变压器高精度数字孪生模型的建立具有重要意义,为实现数字孪生模型对物理实体的快速感知和主动预警提供了新思路。

     

    Abstract: To improve the computational efficiency of the winding temperature in oil-immersed power transformers, this paper proposes a rapid calculation method that integrates discrete node temperatures with the non-intrusive proper orthogonal decomposition (POD) method. First, the POD method is used to establish a reduced-order model for winding temperature calculation, and the reduced-order modes reflecting the characteristics of the winding temperature field distribution are obtained. Next, several discrete nodes within the field are selected to establish a response surface model correlating node temperatures with winding operating conditions. Finally, a mathematical relationship between discrete node temperatures and the entire winding temperature field is constructed using the reduced-order calculation model, enabling rapid inversion from winding operating conditions to discrete node temperatures and subsequently to the entire field temperature. A two-dimensional heat transfer model of a 110 kV oil-immersed transformer winding is analyzed. The results show that the maximum average absolute error of the temperature field does not exceed 0.49 K, the maximum average relative error does not exceed 2.69%, and the maximum error in hot-spot temperature does not exceed 1.72 K. Furthermore, the calculation time for the winding temperature distribution is only 0.78 seconds, representing nearly a thousandfold improvement in efficiency compared to full-order calculations, fully demonstrating the accuracy and high efficiency of the proposed algorithm, and highlighting its significance for establishing high-precision digital twin models of transformers. The study can provide a new approach for the rapid perception and proactive warning of physical entities through digital twin models.

     

/

返回文章
返回