余涛, 王艺澎, 罗庆全, 蔡新雷, 刘熙鹏, 梁敏航. 基于大语言模型的新型电力系统用户特性立体应用模式初探[J]. 高电压技术, 2024, 50(7): 2833-2848. DOI: 10.13336/j.1003-6520.hve.20240875
引用本文: 余涛, 王艺澎, 罗庆全, 蔡新雷, 刘熙鹏, 梁敏航. 基于大语言模型的新型电力系统用户特性立体应用模式初探[J]. 高电压技术, 2024, 50(7): 2833-2848. DOI: 10.13336/j.1003-6520.hve.20240875
YU Tao, WANG Yipeng, LUO Qingquan, CAI Xinlei, LIU Xipeng, LIANG Minhang. Preliminary Exploration for a Large Language Model-based User Characteristics Stereoscopic Application Paradigm in New Power System[J]. High Voltage Engineering, 2024, 50(7): 2833-2848. DOI: 10.13336/j.1003-6520.hve.20240875
Citation: YU Tao, WANG Yipeng, LUO Qingquan, CAI Xinlei, LIU Xipeng, LIANG Minhang. Preliminary Exploration for a Large Language Model-based User Characteristics Stereoscopic Application Paradigm in New Power System[J]. High Voltage Engineering, 2024, 50(7): 2833-2848. DOI: 10.13336/j.1003-6520.hve.20240875

基于大语言模型的新型电力系统用户特性立体应用模式初探

Preliminary Exploration for a Large Language Model-based User Characteristics Stereoscopic Application Paradigm in New Power System

  • 摘要: 随着新型负荷的广泛接入与虚拟电厂建设的不断推进,新型电力系统中多元的负荷结构与频繁的网荷交互使得用户特性应用在数据融合、特性挖掘和业务赋能面临关键挑战。因此,该文首先深入分析了用户特性的研究现状,以此为基础提出了新型电力系统用户特性立体应用模式,贯通了“多源数据-多维特性-多元模块-多样业务”的应用链路。然后,针对该模式实践中海量多源数据可用性差、特性刻画灵活性低、业务贯通复杂性高的核心技术难题,立足于近期大语言模型备受关注的显著能力与智能体应用范式,分别在自适应数据治理、对话式数据交互、自动数据分析与机器学习、多智能体应用系统架构方面提出了解决方案。进一步,更通过用电数据库交互与业扩报装接入优化的案例表明所提方案能够自动化、智能化、个性化地开展用户特性应用,有望在实际中应对用户侧业务面临的关键挑战。最后,对大语言模型赋能用户侧海量资源管控以及系统智能水平跃升进行了展望。

     

    Abstract: With the widespread integration of new loads and the continuous advancement of virtual power plant construction, diverse load structures and frequent grid-load interactions in new power system make user characterization applications to face critical challenges in data fusion, feature extraction, and business empowerment. Therefore, this paper first deeply analyzes the research status of user characteristics, then proposes a user characteristics stereoscopic application paradigm in new power system based on it, which links the application chain of "multi-source data - multi-dimensional characteristics - multi-faceted modules - multi-varied business". Next, aiming at the core technical problems of poor usability of massive multi-source data, low flexibility of characterization, and high complexity of business landing in the realization of the paradigm, based on the remarkable capabilities and agent application paradigms that have attracted much attention in the recent large language models, this paper proposesthe solutions in the aspects of adaptive data governance, conversational data interaction, automated data analysis and machine learning, and multi-agent application system architecture, respectively. Further, the case study of electricity consumption database interaction and business expansion access optimization demonstrates that the proposed solutions can implement the user characteristics application in an automated, intelligent, and personalized manner, which is expected to address the critical challenges faced by the user-side business in practice. Finally, this paper provides an outlook on the large language model empowering the control of massive resources on the user side and the leap of system intelligence level.

     

/

返回文章
返回