朱思佳, 张语桐, 闫爽, 张鹏飞, 刘鹏, 彭宗仁. 特高压盆式绝缘子水压试验与中心嵌件结构优化[J]. 高电压技术, 2025, 51(5): 2506-2515. DOI: 10.13336/j.1003-6520.hve.20240853
引用本文: 朱思佳, 张语桐, 闫爽, 张鹏飞, 刘鹏, 彭宗仁. 特高压盆式绝缘子水压试验与中心嵌件结构优化[J]. 高电压技术, 2025, 51(5): 2506-2515. DOI: 10.13336/j.1003-6520.hve.20240853
ZHU Sijia, ZHANG Yutong, YAN Shuang, ZHANG Pengfei, LIU Peng, PENG Zongren. Hydraulic Test of UHV Basin Insulator and Structure Optimization of Center Insert[J]. High Voltage Engineering, 2025, 51(5): 2506-2515. DOI: 10.13336/j.1003-6520.hve.20240853
Citation: ZHU Sijia, ZHANG Yutong, YAN Shuang, ZHANG Pengfei, LIU Peng, PENG Zongren. Hydraulic Test of UHV Basin Insulator and Structure Optimization of Center Insert[J]. High Voltage Engineering, 2025, 51(5): 2506-2515. DOI: 10.13336/j.1003-6520.hve.20240853

特高压盆式绝缘子水压试验与中心嵌件结构优化

Hydraulic Test of UHV Basin Insulator and Structure Optimization of Center Insert

  • 摘要: 中心嵌件结构是影响特高压盆式绝缘子力学性能的关键,合理的结构优化设计可有效提升绝缘子水压破坏值和设计裕度,保障绝缘子安全稳定运行。为此,建立了盆式绝缘子的电场、应力场分布仿真计算模型,对比了不同中心嵌件结构型式方案;在此基础上进行优选,探究了中心嵌件应力释放槽和倒角过渡线典型结构参数对界面应力的影响,得出了中心嵌件的优化结构和绝缘子水压破坏机制,开展了试验验证。结果表明,凸起金属部分可以降低三结合区的应力分布。此外,靠近界面、深度增加的应力释放槽配合适当的加工宽度可以降低三结合点应力值,在界面端部用倒角过渡可以消除三结合点应力最大的现象。优化后绝缘子三结合点应力值可降低92.94%,界面应力最大值降低83.22%,绝缘子耐受4.5 MPa水压后仍可通过电气性能试验,验证了优化设计的有效性和可行性。研究结果可为盆式绝缘子的结构设计和优化调控提供参考。

     

    Abstract: The center insert structure is the key to influencing the mechanical properties of UHV basin insulators. Reasonable structural optimization design can effectively improve the hydraulic failure value and design margin of insulators, and ensure the safe and stable operation of insulators. In this paper, the electric field and stress field distribution simulation model of the basin insulator is established, and different center insert structural schemes are compared. Based on this, the influence of typical structural parameters of the stress release groove and fillet transition line on the interface stress is explored. The optimal structure of the center insert and the hydraulic failure mechanism of the insulator are obtained, and experimental verification is carried out. The results show that convex metal can reduce the stress distribution in the trijunction zone. Furthermore, the stress value at the trijunction point can be reduced by the stress release groove which is deeper and closer to the interface with the appropriate processing width. The phenomenon can be eliminated that the maximum stress is at the trijunction point by using a fillet transition zone. After optimization, the stress value of the trijunction point of the insulator can be reduced by 92.94%, and the maximum interface stress can be reduced by 83.22%. The insulators can still pass the electrical performance test after they have been loaded with 4.5 MPa hydraulic pressure, which verifies the effectiveness and feasibility of the optimized design. The research results can provide a reference for the structural design and optimal control of the basin insulator.

     

/

返回文章
返回