胡琴, 张永, 陈旭烨, 林晖尧, 何坚, 王振国. OPGW直流融冰温升特性及其影响因素[J]. 高电压技术, 2025, 51(5): 2363-2373. DOI: 10.13336/j.1003-6520.hve.20240709
引用本文: 胡琴, 张永, 陈旭烨, 林晖尧, 何坚, 王振国. OPGW直流融冰温升特性及其影响因素[J]. 高电压技术, 2025, 51(5): 2363-2373. DOI: 10.13336/j.1003-6520.hve.20240709
HU Qin, ZHANG Yong, CHEN Xuye, LIN Huiyao, HE Jian, WANG Zhenguo. DC Ice-melting Temperature Rise Characteristics of OPGW and Its Influencing Factors[J]. High Voltage Engineering, 2025, 51(5): 2363-2373. DOI: 10.13336/j.1003-6520.hve.20240709
Citation: HU Qin, ZHANG Yong, CHEN Xuye, LIN Huiyao, HE Jian, WANG Zhenguo. DC Ice-melting Temperature Rise Characteristics of OPGW and Its Influencing Factors[J]. High Voltage Engineering, 2025, 51(5): 2363-2373. DOI: 10.13336/j.1003-6520.hve.20240709

OPGW直流融冰温升特性及其影响因素

DC Ice-melting Temperature Rise Characteristics of OPGW and Its Influencing Factors

  • 摘要: 光纤复合架空地线(OPGW)覆冰严重影响电网的供电可靠性。为研究OPGW直流融冰的温升特性及其影响因素,建立了OPGW直流融冰动态数值计算模型,仿真研究融冰时和完全融冰后OPGW的温度场分布情况,从环境温度、风速、融冰电流等方面分析了OPGW光纤温度变化的影响因素,并在人工气候室验证了模型结果的准确性。结果表明:OPGW与冰层内表面之间的椭圆形空气间隙会阻碍热量向冰层的传递,脱冰后OPGW稳态温度场分布因融冰导线类型和所在位置的不同而具有明显差异;脱冰时光纤最高温度随融冰电流、覆冰厚度的增大而增大,并与风速和环境温度无关;完全融冰后光纤温度随环境温度升高、风速减小、融冰电流增大而升高;光纤最高温度出现的时刻与风速有关,当风速为0~3m/s时,脱冰后光纤温度将持续升高,此时OPGW直流融冰技术只适合应用于以金属材料为主的耐高温光缆;文中提出的模型计算值与试验值的相对误差不高于10%,可验证模型的准确性。

     

    Abstract: The heavy icing on the optical fiber composite overhead ground wire (OPGW) seriously affects the power supply reliability of power grids. In order to study the temperature-rise characteristics of OPGW during DC ice-melting and its influencing factors, this paper establishes a dynamic numerical calculation model for OPGW DC ice-melting, and simulates the temperature field distribution of OPGW during ice-melting and after complete ice-melting. The influencing factors of OPGW fiber temperature change are analyzed from the aspects of environmental temperature, wind speed, ice-melting current, etc. The accuracy of the model results is verified in an artificial climate room. The results show that the elliptical air gap between OPGW and the inner surface of the ice layer impedes heat transfer to the ice layer. After ice-melting, the steady-state temperature distribution of OPGW varies significantly depending on the type of ice-melting conductor and its location. The maximum temperature of the optical fiber during ice-melting increases with the increase of ice-melting current and ice cover thickness, independent of wind speed and ambient temperature. After complete ice-melting, the optical fiber temperature increases with rising ambient temperature, decreasing wind speed, and increasing ice-melting current. The moment when the optical fiber reaches its highest temperature is related to wind speed; when the wind speed is between 0 to 3 m/s, the optical fiber temperature continues to rise after ice melting. Thus, DC ice-melting technology for OPGW is only suitable for high-temperature-resistant optical cables predominantly made of metal materials. The relative error between the model calculation values proposed in this paper and experimental values is no more than 10%, validating the accuracy of the model.

     

/

返回文章
返回