刘超, 张民, 马飞越, 肖权, 牛勃, 佃松宜. 基于暗通道先验和双阈值分割的GIS腔体运检图像增强算法[J]. 高电压技术, 2025, 51(3): 1092-1102. DOI: 10.13336/j.1003-6520.hve.20240484
引用本文: 刘超, 张民, 马飞越, 肖权, 牛勃, 佃松宜. 基于暗通道先验和双阈值分割的GIS腔体运检图像增强算法[J]. 高电压技术, 2025, 51(3): 1092-1102. DOI: 10.13336/j.1003-6520.hve.20240484
LIU Chao, ZHANG Min, MA Feiyue, XIAO Quan, NIU Bo, DIAN Songyi. GIS Cavity Operation Image Enhancement Algorithm Based on Dark Channel Prior and Double Threshold Segmentation[J]. High Voltage Engineering, 2025, 51(3): 1092-1102. DOI: 10.13336/j.1003-6520.hve.20240484
Citation: LIU Chao, ZHANG Min, MA Feiyue, XIAO Quan, NIU Bo, DIAN Songyi. GIS Cavity Operation Image Enhancement Algorithm Based on Dark Channel Prior and Double Threshold Segmentation[J]. High Voltage Engineering, 2025, 51(3): 1092-1102. DOI: 10.13336/j.1003-6520.hve.20240484

基于暗通道先验和双阈值分割的GIS腔体运检图像增强算法

GIS Cavity Operation Image Enhancement Algorithm Based on Dark Channel Prior and Double Threshold Segmentation

  • 摘要: 针对存在弱光强反射的气体绝缘开关(gas insulated switchgear,GIS)腔体环境,提高腔体内部运检机器人的检测准确率,提出了一种基于暗通道先验和双阈值分割的高光去除图像增强算法。首先,利用暗通道先验生成了近似伪镜面反射图像;然后,利用提出的双阈值分割函数确定图像高光区域掩膜(MASK),并通过该MASK来精确优化伪镜面反射图像,避免漫反射分量区域的错误像素分离;最后,利用交替方向乘子算法优化求解带有伪镜面反射图像约束的L1-L2混合变分模型完成图像高光去除。在公开数据集和自制GIS腔体数据集上的定性和定量试验结果表明,所提算法相较于传统经典高光去除算法能更加有效地实现镜面反射分量和漫反射分量的分离,能有效去除高光并避免图像失真,对提高GIS腔体故障的检测准确率具有一定的实际意义。

     

    Abstract: To address the issue of weak light and strong reflections within the gas insulated switchgear (GIS) cavity environment, we proposed an algorithm to further improve the detection accuracy of the internal inspection robot in the cavity by introducing a highlight removal method based on the dark channel prior and dual-threshold segmentation. Initially, an approximate pseudo-mirror reflection image is generated using the dark channel prior. Subsequently, a proposed dual-threshold segmentation function identifies the image's highlight regions as a MASK, precisely optimizing the pseudo-mirror reflection image using this MASK to prevent erroneous pixel separation in the diffuse reflection component areas. Finally, an alternating direction method of multipliers (ADMM) algorithm optimizes and solves the L1-L2 mixed variational model constrained with the pseudo-mirror reflection image to accomplish the removal of image highlights. Qualitative and quantitative experiments are conducted on public datasets and GIS chamber datasets demonstrate that, compared to traditional classic highlight removal algorithms, the proposed algorithm effectively separates mirror reflection components and diffuse reflection components, efficiently removes highlights and avoids image distortion and has a certain practical significance in improving the accuracy of GIS cavity fault detection.

     

/

返回文章
返回