吕中亮, 夏可文, 卢震宇, 曾超, 叶伟拓, 陈橙. 密集特征加权融合网络用于复杂天气下的绝缘子表面缺陷检测[J]. 高电压技术, 2025, 51(3): 1114-1125. DOI: 10.13336/j.1003-6520.hve.20232254
引用本文: 吕中亮, 夏可文, 卢震宇, 曾超, 叶伟拓, 陈橙. 密集特征加权融合网络用于复杂天气下的绝缘子表面缺陷检测[J]. 高电压技术, 2025, 51(3): 1114-1125. DOI: 10.13336/j.1003-6520.hve.20232254
LYU Zhongliang, XIA Kewen, LU Zhenyu, ZENG Chao, YE Weituo, CHEN Cheng. Weather-robust Insulator Surface Defect Detection with Dense Feature Weighted Fusion Network[J]. High Voltage Engineering, 2025, 51(3): 1114-1125. DOI: 10.13336/j.1003-6520.hve.20232254
Citation: LYU Zhongliang, XIA Kewen, LU Zhenyu, ZENG Chao, YE Weituo, CHEN Cheng. Weather-robust Insulator Surface Defect Detection with Dense Feature Weighted Fusion Network[J]. High Voltage Engineering, 2025, 51(3): 1114-1125. DOI: 10.13336/j.1003-6520.hve.20232254

密集特征加权融合网络用于复杂天气下的绝缘子表面缺陷检测

Weather-robust Insulator Surface Defect Detection with Dense Feature Weighted Fusion Network

  • 摘要: 在电力输电系统的巡检中,由于各种复杂天气的影响,极易导致绝缘子成像出现遮挡、模糊等问题。针对该问题,为更好地反映真实巡检场景,首先采用Albumentations图像增强框架构建了一个包括正常天气、太阳照射、雨天、雾天、雪天等多种复杂气象条件下的绝缘子表面缺陷数据集。其次,基于YOLOv5s模型进行改进,提出了两种深层次的密集特征加权融合颈部网络,以替代原有颈部网络并加强对各种复杂天气下微弱、模糊特征的学习能力。最后,在模型的头部网络中,引入Focal-Efficient IOU Loss作为损失函数,以应对由于复杂天气干扰导致的边界框回归正负样本失衡问题。实验表明,当交并比阈值为0.5时,该文所提模型在复杂天气绝缘子数据集中的均值平均精度达到99.3%,同时检测精度和召回率分别达到100%和98.1%。相对于其他检测模型,该模型在各项指标上都表现出良好的性能,能够更好地满足复杂天气下绝缘子表面模糊自爆缺陷的高精度检测任务。

     

    Abstract: In the inspection of power transmission system, due to the influence of various complex weather, the imaging of insulator can easily be obscured and blurred. Aiming at this problem, in order to better reflect the real patrol scenes, firstly, this study constructed a dataset of insulator surface defects under various complex weather conditions, including normal weather, sunlight exposure, rainy weather, foggy weather, and snowy weather by using the Albumentations image augmentation framework. Secondly, based on the YOLOv5s model, two deep dense feature-weighted fusion neck networks are proposed to replace the original neck networks so as to strengthen the ability to learn weak and vague features in various complex weather. Finally, the Focal-Efficient IOU Loss is introduced as the loss function in the head network of the model to deal with the problem of positive and negative sample unbalances of boundary box regression due to complex weather interference. The experiments show that when the intersection over union threshold is 0.5, the mean average accuracy of the proposed model in complex weather insulator data sets reaches 99.3%, and the detection precision and recall rate reach 100% and 98.1%, respectively. Compared with other detection models, this model shows good performance in various indicators, and can better meet the high-precision detection tasks of blurred self-explosion defects on insulator surfaces under challenging weather conditions.

     

/

返回文章
返回