汪敏, 荣腾飞, 李茜, 魏澈, 张安安. 基于可学习小波自注意力模型的海上风电功率超短期预测[J]. 高电压技术, 2025, 51(3): 1422-1433. DOI: 10.13336/j.1003-6520.hve.20232199
引用本文: 汪敏, 荣腾飞, 李茜, 魏澈, 张安安. 基于可学习小波自注意力模型的海上风电功率超短期预测[J]. 高电压技术, 2025, 51(3): 1422-1433. DOI: 10.13336/j.1003-6520.hve.20232199
WANG Min, RONG Tengfei, LI Qian, WEI Che, ZHANG An'an. Ultra-short Term Prediction of Offshore Wind Power Based on Learnable Wavelet Self-attention Model[J]. High Voltage Engineering, 2025, 51(3): 1422-1433. DOI: 10.13336/j.1003-6520.hve.20232199
Citation: WANG Min, RONG Tengfei, LI Qian, WEI Che, ZHANG An'an. Ultra-short Term Prediction of Offshore Wind Power Based on Learnable Wavelet Self-attention Model[J]. High Voltage Engineering, 2025, 51(3): 1422-1433. DOI: 10.13336/j.1003-6520.hve.20232199

基于可学习小波自注意力模型的海上风电功率超短期预测

Ultra-short Term Prediction of Offshore Wind Power Based on Learnable Wavelet Self-attention Model

  • 摘要: 为了提高海上风电功率预测的精度以及其预测结果的可信度,提出了一种融合可学习小波的自注意力模型,有效提升了海上风电功率预测的精度,并且具备一定的预测过程分析能力。首先,将小波分解与深度学习模型融合,使模型具备从不同频域提取特征的能力。其次,构建稀疏自注意力预测网络,实现对全局信息特征的有效提取,提高模型的预测性能。接着,提出一种时序“敏感度”量化分析方法,在多维度下对海上风电参量输入进行重要性评估,在一定程度上对预测机理进行合理的分析。最后,基于风场实际运行数据进行相关实验。实验结果表明,相较对比模型,所提模型在海上风电超短期预测任务上具有更高的预测精度。

     

    Abstract: In order to improve the accuracy of offshore wind power prediction and the reliability of its prediction results, a self-attention model integrating learnable wavelet is proposed, which effectively improves the accuracy of offshore wind power prediction and has a certain ability of forecasting process analysis. First, the wavelet decomposition is integrated with the deep learning model, so that the model has the ability to extract features from different frequency domains. Second, a sparse self-attention prediction network is constructed to extract global information features effectively and improve the prediction performance of the model. Then, a time-series "sensitivity" quantitative analysis method is proposed to evaluate the importance of offshore wind power parameter input in multiple dimensions, and to analyze the prediction mechanism reasonably to a certain extent. Finally, relevant experiments are carried out based on actual operation data of wind field. The experimental results show that, compared with the model, the proposed model has higher prediction accuracy in the ultra-short term prediction task of offshore wind power.

     

/

返回文章
返回