刘道生, 崔车乐, 刘展鹏, 王仕会. 基于分子动力学模拟的电-热耦合作用下改性纤维素纸的劣化微观机理[J]. 高电压技术, 2024, 50(12): 5378-5387. DOI: 10.13336/j.1003-6520.hve.20232132
引用本文: 刘道生, 崔车乐, 刘展鹏, 王仕会. 基于分子动力学模拟的电-热耦合作用下改性纤维素纸的劣化微观机理[J]. 高电压技术, 2024, 50(12): 5378-5387. DOI: 10.13336/j.1003-6520.hve.20232132
LIU Daosheng, CUI Chele, LIU Zhanpeng, WANG Shihui. Aging Microscopic Mechanism of Modified Cellulose Paper Under Electro-thermal Coupling Based on Molecular Dynamics Simulation[J]. High Voltage Engineering, 2024, 50(12): 5378-5387. DOI: 10.13336/j.1003-6520.hve.20232132
Citation: LIU Daosheng, CUI Chele, LIU Zhanpeng, WANG Shihui. Aging Microscopic Mechanism of Modified Cellulose Paper Under Electro-thermal Coupling Based on Molecular Dynamics Simulation[J]. High Voltage Engineering, 2024, 50(12): 5378-5387. DOI: 10.13336/j.1003-6520.hve.20232132

基于分子动力学模拟的电-热耦合作用下改性纤维素纸的劣化微观机理

Aging Microscopic Mechanism of Modified Cellulose Paper Under Electro-thermal Coupling Based on Molecular Dynamics Simulation

  • 摘要: 计算机技术的快速发展推动了分子模拟技术在变压器绝缘材料和纳米改性研究中的广泛应用。现有研究主要从静态下研究纳米颗粒对绝缘材料的改性效果,从电热联合老化的动态过程中揭示纳米颗粒对绝缘材料改性机制的研究尚未完善。文中建立了不同含量的SiO2/纤维素分子模型,通过分子动力学模拟的技术手段对分子模型进行老化处理,研究电热耦合作用下SiO2改性纤维素微观参数的变化规律。结果表明:纤维素模型的热力学与介电性能主要受温度影响,电场的引入加剧了温度对纤维素的影响,加速了纤维素的老化;添加SiO2颗粒改性后纤维素的热力学和介电性能得到了显著提升,添加含量对改性效果的提升存在阈值,其中5%SiO2/纤维素模型具有最佳改性效果。以上结论表明限制分子链的运动以及提升SiO2与纤维素的相容性是提高绝缘材料抗老化性能的关键,为深入了解纳米改性机制和指导绝缘材料改良提供理论支持。

     

    Abstract: Advancements in computer technology promote the widespread application of molecular simulations in studying transformer insulation materials and nano-modification. Current research focuses on nanoparticle effects on insulation materials under static conditions, but rarely studies their modification mechanisms during electrical aging. Consequently, we established molecular models with different contents of SiO2/cellulose, and adopted aging treatment process to investigate the changes in the microstructural parameters of the cellulose modified by SiO2 under the influence of electro-thermal coupling. The study indicates that the thermodynamic and dielectric properties of the cellulose model are primarily influenced by the temperature. Introducing an electric field will amplify the temperature's impact on the cellulose and speed up the aging process. Adding SiO2 particles can enhance the thermodynamic and dielectric properties of the cellulose, and there is a threshold for the modification effect. The 5% SiO2/cellulose model has the best modification effect. The findings suggest that restricting molecular chain movement to enhance the compatibility between SiO2 and cellulose are crucial for enhancing the anti-aging performance of the insulation materials. The results can provide a theoretical support for a deeper understanding of the nano-modification mechanism and guiding improvements in insulation materials.

     

/

返回文章
返回