Abstract:
For urban comprehensive energy systems with large scale, numerous devices, and diverse energy forms, existing modeling methods have low efficiency in the optimization and solution process, making it difficult to fully explore the coupling flexibility of electricity-gas-heat-cool-storage-demand response at high spatiotemporal scale accuracy. Therefore, taking into account the renewable energy generation equipment, energy conversion devices, hybrid energy storage, and demand responses, we proposed a low dimensional matrix modeling method for urban comprehensive energy systems, and developed a demand response elastic subsidy strategy based on user discomfort and spatiotemporal load degree. Moreover, a collaborative planning model for urban comprehensive energy systems based on annual simulation of 8 760 hours of operation and regional interconnection was proposed with the goal of minimizing the total annual cost of the system. Six scenarios were compared based on actual calculation examples, and the effects of mixed energy storage, demand response, and spatiotemporal scale on the economic cost, renewable energy utilization rate, and CO
2 emissions of the planning scheme were studied. The feasibility, cleanliness, and economy of the proposed method were verified.