杨子坚, 司马文霞, 杨鸣, 黎文浩, 袁涛, 孙魄韬. 融合流-热场耦合仿真与EEMD-LSTM网络的油浸式变压器热点温度快速预测方法[J]. 高电压技术, 2025, 51(3): 1220-1232. DOI: 10.13336/j.1003-6520.hve.20232054
引用本文: 杨子坚, 司马文霞, 杨鸣, 黎文浩, 袁涛, 孙魄韬. 融合流-热场耦合仿真与EEMD-LSTM网络的油浸式变压器热点温度快速预测方法[J]. 高电压技术, 2025, 51(3): 1220-1232. DOI: 10.13336/j.1003-6520.hve.20232054
YANG Zijian, SIMA Wenxia, YANG Ming, LI Wenhao, YUAN Tao, SUN Potao. Rapid Prediction Method of Hot Spot Temperature of Oil-immersed Transformer Combining Flow-thermal Coupling Simulation and EEMD-LSTM Network[J]. High Voltage Engineering, 2025, 51(3): 1220-1232. DOI: 10.13336/j.1003-6520.hve.20232054
Citation: YANG Zijian, SIMA Wenxia, YANG Ming, LI Wenhao, YUAN Tao, SUN Potao. Rapid Prediction Method of Hot Spot Temperature of Oil-immersed Transformer Combining Flow-thermal Coupling Simulation and EEMD-LSTM Network[J]. High Voltage Engineering, 2025, 51(3): 1220-1232. DOI: 10.13336/j.1003-6520.hve.20232054

融合流-热场耦合仿真与EEMD-LSTM网络的油浸式变压器热点温度快速预测方法

Rapid Prediction Method of Hot Spot Temperature of Oil-immersed Transformer Combining Flow-thermal Coupling Simulation and EEMD-LSTM Network

  • 摘要: 快速准确地预测变压器热点温度是实现变压器状态检测、故障预测以及动态增容的重要前提,其关键是实现变压器热点温度动态预测以及提高热点温度预测模型的抗噪性能。该文通过流-热场耦合仿真计算,获取不同环境温度和负载变化工况的热点温度训练样本,采用长短期记忆网络(long short-term memory network,LSTM)构建深度学习模型,从而实现热点温度动态预测。采用集成经验模态分解(ensemble empirical mode decomposition,EEMD)降低输入数据中的噪声干扰,提高深度学习模型抗噪性能。以20 MVA/110 kV油浸式变压器为对象进行分析,并搭建变压器热点温升试验平台进行模型有效性验证,EEMD-LSTM网络预测的热点温度相比试验结果的平均误差仅有1.35 ℃,引入幅值为5 ℃的随机噪声后,最大误差仅增大0.47 ℃。结果表明:基于EEMD-LSTM网络的深度学习模型能够实现变压器热点温度动态预测,同时具有良好的抗噪性能,对变压器负荷能力动态评估与动态增容的研究具有重要意义。

     

    Abstract: Fast and accurate prediction of hot spot temperature is an important precondition for condition detection, fault prediction and dynamic overload of transformers. The key is to realize dynamic prediction of transformer hot spot temperature and improve anti-noise performance of the hot spot temperature prediction model. In this paper, the hot spot temperature training samples of different ambient temperature and load change conditions are obtained through flow-thermal field coupling simulation calculation. The long short-term memory network (LSTM) is used to construct a deep learning model so as to realize the dynamic prediction of hot spot temperature. The ensemble empirical mode decomposition (EEMD) is used to reduce the noise interference in the input data, improving the anti-noise performance of the deep learning model. A 20 MVA/110 kV oil-immersed transformer is taken as example for analysis, and an experimental platform of transformer hot spot temperature rise is built to verify the validity of the model. The average error of the hot spot temperature predicted by the EEMD-LSTM network compared with the experimental results is only 1.35 ℃. After introducing random noise with amplitude of 5 ℃, the maximum error only increases by 0.47 ℃. The results show that the deep learning model based on EEMD-LSTM network can realize the dynamic prediction of transformer hot spot temperature, and it has good anti-noise performance, which is of great significance to the study of dynamic evaluation of transformer load capacity and dynamic capacity increase.

     

/

返回文章
返回