冯宇, 高强, 岳东, 朱博, 迟庆国, 陈庆国. 基于夹层结构各层协同优化的聚合物基复合介质储能性能[J]. 高电压技术, 2024, 50(10): 4570-4580. DOI: 10.13336/j.1003-6520.hve.20232016
引用本文: 冯宇, 高强, 岳东, 朱博, 迟庆国, 陈庆国. 基于夹层结构各层协同优化的聚合物基复合介质储能性能[J]. 高电压技术, 2024, 50(10): 4570-4580. DOI: 10.13336/j.1003-6520.hve.20232016
FENG Yu, GAO Qiang, YUE Dong, ZHU Bo, CHI Qingguo, CHEN Qingguo. Energy Storage Performance of Polymer-based Composite Based on Cooperative Optimization of Each Layer of Sandwich Structure[J]. High Voltage Engineering, 2024, 50(10): 4570-4580. DOI: 10.13336/j.1003-6520.hve.20232016
Citation: FENG Yu, GAO Qiang, YUE Dong, ZHU Bo, CHI Qingguo, CHEN Qingguo. Energy Storage Performance of Polymer-based Composite Based on Cooperative Optimization of Each Layer of Sandwich Structure[J]. High Voltage Engineering, 2024, 50(10): 4570-4580. DOI: 10.13336/j.1003-6520.hve.20232016

基于夹层结构各层协同优化的聚合物基复合介质储能性能

Energy Storage Performance of Polymer-based Composite Based on Cooperative Optimization of Each Layer of Sandwich Structure

  • 摘要: 近年来,聚合物基纳米复合介质因其具有可塑性强和功率密度大且稳定性好等优点而受到广泛关注。但由于其自身能量密度小且耐击穿能力有限,不能满足现代电气化时代高精密储能器件的要求。为了获得兼具高击穿强度和高储能密度的聚合物基复合介质,研究设计了一种新的夹层结构,将铁电聚合物聚(偏氟乙烯-三氟乙烯-氯氟乙烯)(PVTC)与线性聚合物聚甲基丙烯酸甲酯(PMMA)共混作为外部绝缘层,将具高介电常数的核壳结构BT@AO@PDA纳米纤维添加到PVTC中作为中间极化层,构筑的正向夹层结构(绝缘层-极化层-绝缘层)实现了击穿强度和介电常数的协同提升。其中,PMMA质量分数为25%的PMMA/PVTC复合介质和3%的BT@AO@PDA/PVTC复合介质构成的正向夹层结构在562.7 MV/m电场下获得了17.25 J/cm3的高储能密度,并且具有优异的充放电循环稳定性和1.42 μs的超快放电速率。该工作为制备高储能柔性介质薄膜电容器提供了一种简便且有效的策略。

     

    Abstract: Polymer-based dielectric nanocomposites have received a lot of attention recently because of their strong plasticity, high power density, and excellent stability; however, they cannot satisfy the specifications of high-precision energy storage devices in the current electrification era due to their lower energy density and constrained breakdown resistance. In order to obtain a polymer-based composite with both high breakdown strength and high energy storage density, in this paper, a novel sandwich structure composite was created by blending the ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoro ethylene) (PVTC) with the linear polymer polymethyl methacrylate (PMMA) as the external insulating layer, and PVTC was filled with the core-shell nanofiber BT@AO@PDA NFs with high dielectric constant as the high dielectric polarization layer. The positive sandwich structure (insulation layer-polarization layer-insulation layer) realizes the cooperative improvement of breakdown strength and dielectric constant. Among them, the positive sandwich structure composed of PMMA/PVTC (25% PMMA) composite and 3% BT@AO@PDA/PVTC composite achieves a high energy storage density of 17.25 J/cm3 under the electric field of 562.7 MV/m, and also has excellent charge-discharge cycle stability and ultra-fast discharge rate of 1.42 μs. This work offers a quick and efficient technique for manufacturing flexible dielectric film capacitors with high energy storage.

     

/

返回文章
返回