吴泽华, 程建伟, 吴宝英, 赵林杰, 辛璐名, 王青于. 基于数据驱动的三相共箱GIL温度场分布快速计算方法[J]. 高电压技术, 2025, 51(1): 110-122. DOI: 10.13336/j.1003-6520.hve.20231970
引用本文: 吴泽华, 程建伟, 吴宝英, 赵林杰, 辛璐名, 王青于. 基于数据驱动的三相共箱GIL温度场分布快速计算方法[J]. 高电压技术, 2025, 51(1): 110-122. DOI: 10.13336/j.1003-6520.hve.20231970
WU Zehua, CHENG Jianwei, WU Baoying, ZHAO Linjie, XIN Luming, WANG Qingyu. Data-driven Fast Calculation Method for Temperature Field Distribution of Three-phase Compact GIL[J]. High Voltage Engineering, 2025, 51(1): 110-122. DOI: 10.13336/j.1003-6520.hve.20231970
Citation: WU Zehua, CHENG Jianwei, WU Baoying, ZHAO Linjie, XIN Luming, WANG Qingyu. Data-driven Fast Calculation Method for Temperature Field Distribution of Three-phase Compact GIL[J]. High Voltage Engineering, 2025, 51(1): 110-122. DOI: 10.13336/j.1003-6520.hve.20231970

基于数据驱动的三相共箱GIL温度场分布快速计算方法

Data-driven Fast Calculation Method for Temperature Field Distribution of Three-phase Compact GIL

  • 摘要: 基于有限元等数值计算方法的仿真速度慢,难以满足电力设备数字孪生中监测分析的实时性需求。为此,该文以三相共箱气体绝缘金属封闭输电线路(gas insulated metal enclosed transmission line,GIL)为研究对象,提出了一种基于数据降维-代理模型的温度场分布快速计算方法,采用电磁-热-流多物理场耦合仿真获取输入数据集,通过经验正交函数分析法(empirical orthogonal function,EOF)进行仿真结果的网格节点数据的降维和截断,并应用代理模型构建边界条件与截断后数据的映射关系,分析了关键参数对快速计算结果误差的影响规律。结果表明,采用该文数据降维重构方法能够在较低截断误差的情况下大规模缩减代理模型的输入数据集,快速计算方法的误差与使用的代理模型和输入数据规模有关,选用适配的方法和参数时最大绝对误差可低于0.5 ℃,仿真时间缩短至秒级以内。该研究结果可为数字化设备多物理场快速计算分析提供参考和思路。

     

    Abstract: The simulation based on finite element method and other numerical calculation methods has slow calculation speed, which is difficult to meet the real-time requirements of equipment monitoring and analysis in digital twin. Therefore, this paper takes the three-phase compact GIL as the research object and proposes a fast calculation method for temperature field distribution based on data reduction and surrogate model. The input dataset is obtained through electromagnetic-thermal-flow multi physical field coupling simulation. The grid node data of the simulation results are dimensionally reduced and truncated using the EOF method, while a surrogate model is applied to construct a mapping relationship between boundary conditions and truncated data. The impact of the key parameters on the error of fast calculation results is also analyzed. The results indicate that using the data reduction and reconstruction method proposed in this paper can significantly reduce the input dataset for the surrogate model with low truncation errors. The error of the fast calculation method is related to the surrogate model used and the size of the input data. When selecting an adaptive method and parameters, the maximum absolute error can be less than 0.5 ℃, and the simulation time can be shortened to within seconds. The research results of this paper can provide reference and ideas for the fast calculation of multi-physical fields in digital power equipment.

     

/

返回文章
返回