张雨啸, 张贲, 宋辉, 唐忠, 刘广辉, 江长明. 非典型数据集下基于Swin Transformer的局部放电模式识别[J]. 高电压技术, 2024, 50(12): 5346-5356. DOI: 10.13336/j.1003-6520.hve.20231854
引用本文: 张雨啸, 张贲, 宋辉, 唐忠, 刘广辉, 江长明. 非典型数据集下基于Swin Transformer的局部放电模式识别[J]. 高电压技术, 2024, 50(12): 5346-5356. DOI: 10.13336/j.1003-6520.hve.20231854
ZHANG Yuxiao, ZHANG Ben, SONG Hui, TANG Zhong, LIU Guanghui, JIANG Changming. Partial Discharge Pattern Recognition Based on Swin Transformer in Atypical Datasets[J]. High Voltage Engineering, 2024, 50(12): 5346-5356. DOI: 10.13336/j.1003-6520.hve.20231854
Citation: ZHANG Yuxiao, ZHANG Ben, SONG Hui, TANG Zhong, LIU Guanghui, JIANG Changming. Partial Discharge Pattern Recognition Based on Swin Transformer in Atypical Datasets[J]. High Voltage Engineering, 2024, 50(12): 5346-5356. DOI: 10.13336/j.1003-6520.hve.20231854

非典型数据集下基于Swin Transformer的局部放电模式识别

Partial Discharge Pattern Recognition Based on Swin Transformer in Atypical Datasets

  • 摘要: 随着深度学习算法在局部放电模式识别领域的广泛应用,其很大程度上弥补了传统方法施行困难、效率低下的缺点。但由于实际现场局部放电机理复杂且情况多变,且可供训练的缺陷放电数据稀缺,大部分深度学习算法仍难以在实际使用中取得理想的识别准确率。该文通过分析实际测得的局部放电相位分辩的脉冲序列(phase resolved pluse sequence,PRPS)图谱特征上存在的问题,对比前者和局部放电缺陷实验模型上测得的PRPS图谱特征之间的差异,发现实际测得的现场数据具有更多的非典型特征,因此针对其提出一种基于Swin Transformer网络的局部放电识别方法,测试了该网络在前述两种来源数据上的识别准确率,并与传统神经网络进行了对比。结果表明:Swin Transformer网络可以在实际现场数据分类上取得93.3%的识别准确率,与传统方法相比,其识别准确率更高,且适用于现场缺乏局部放电样本的情形,更适合实际条件下使用。

     

    Abstract: The extensive application of deep learning algorithms in the field of partial discharge pattern recognition largely makes up for the shortcomings of traditional works such as difficulty in practice and low efficiency. However, because the unpredictable situations happen on-site, the partial discharge has complex mechanisms, and partial discharge data are rarely available for training, most deep learning algorithms are still difficult to achieve ideal recognition accuracy in actual situations. By analyzing the problems in the features of actual PRPS pattern and comparing the differences with the features of PRPS pattern measured on partial discharge defect models, this paper finds that the actual pattern has more atypical features. Therefore, we put forward a partial discharge recognition method based on the Swin Transformer network. We tested the recognition accuracy of the network on the data from two sources mentioned above, and compared the results with traditional neural networks. The results show that the Swin Transformer can achieve a recognition accuracy of 93.3% on on-site data sets. Compared with traditional methods, the Swin Transformer has higher recognition accuracy. It is also suitable for situations where there is a lack of partial discharge samples and it is more suitable for practical use.

     

/

返回文章
返回